Black Hole Entropy for Two Higher Derivative Theories of Gravity
Abstract
:1. Introduction
2. The Deser-Sarioglu-Tekin Solution
- corresponds to Einstein-Hilbert action. In fact, and and for positive constants, the Schwarzschild solution of general relativity is recovered;
- : only the trivial, physically unacceptable, solution exists;
- : then, for some positive constants and :
- In all other cases, the general solution to (4) turns out to be
- for or , we have that and as ;
- for or , we have that and as .
- is s.t. on the horizon
- The normalization conditions hold
- All the other scalar products vanishes.
3. The Clifton-Barrow Solution
4. Conclusions
Acknowledgements
References
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; Leibundgut, B.; Phillips, M.M.; Reiss, D.; Schmidt, B.P.; Schommer, R.A.; Smith, R.S.; Spyromilio, J.; Stubbs, C.; Suntzeff, N.b.; Tonry, J. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; Hook, I.M.; Kim, A.G.; Kim, M.Y.; Lee, J.C.; Nunes, N.J.; Pain, R.; Pennypacker, C.R.; Quimby, R.; Lidman, C.; Ellis, R.S.; Irwin, M.; McMahon, R.G.; Ruiz-Lapuente, P.; Walton, N.; Schaefer, B.; Boyle, B.J.; Filippenko, A.V.; Matheson, T.; Fruchter, A.S.; Panagia, N.; Newberg, H.J.M.; Couch, W.J. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 1999, 517, 565. [Google Scholar] [CrossRef]
- Padmanabhan, T. Dark energy: Mystery of the millennium. AIP Conf. Proc. 2006, 861, 179. [Google Scholar]
- Sahni, V.; Starobinsky, A.A. The Case for a positive cosmological Lambda term. Int. J. Mod. Phys. 2000, D9, 373. [Google Scholar] [CrossRef]
- Carroll, S.M. The Cosmological constant. Living Rev. Rel. 2001, 4, 1. [Google Scholar] [CrossRef]
- Peebles, P.J.E.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559. [Google Scholar] [CrossRef]
- Padmanabhan, T. Cosmological constantthe weight of the vacuum. Phys. Rept. 2003, 380, 235. [Google Scholar] [CrossRef]
- Copeland, E.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. 2006, D15, 1753. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Meth. Mod. Phys. 2007, 4, 115. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. f(R) Theories Of gravity. Rev. Mod. Phys. 2010, 82, 451. [Google Scholar] [CrossRef]
- Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. 1980, B91, 99. [Google Scholar] [CrossRef]
- Carroll, S.M.; Duvvuri, V.; Trodden, M.; Turner, M.S. Is cosmic speed-up due to new gravitational physics? Phys. Rev. 2004, D70, 043528. [Google Scholar] [CrossRef]
- Capozziello, S.; Carloni, S.; Troisi, A. Quintessence without scalar fields. arXiv astro-ph/0303041.
- Capozziello, S.; Cardone, V.F.; Troisi, A. Reconciling dark energy models with f(R) theories. Phys. Rev. 2005, D71, 043503. [Google Scholar]
- Utiyama, R.; DeWitt, B.S. Renormalization of a classical gravitational field interacting with quantized matter fields. J. Math. Phys. 1962, 3, 608. [Google Scholar] [CrossRef]
- Fradkin, E.S.; Vilkovisky, G.A. S Matrix for Gravitational Field. II. Local measure; General relations; Elements of renormalization theory. Phys. Rev. 1973, D8, 4241. [Google Scholar]
- Fradkin, E.S.; Tseytlin, A.A. Renormalizable asymptotically free quantum theory of gravity. Nucl. Phys. 1982, B201, 469. [Google Scholar] [CrossRef]
- Stelle, K.S. Renormalization of higher-derivative quantum gravity. Phys. Rev. 1977, D 16, 953. [Google Scholar] [CrossRef]
- Avramidi, I.G.; Barvinsky, A.O. Asymptotic freedom in higher derivative quantum gravity. Phys. Lett. 1985, B159, 269. [Google Scholar] [CrossRef]
- Avramidi, I.G. Asymptotic behavior of the quantum theory of gravity with higher order derivatives. Yad. Fiz. 1986, 44, 255. [Google Scholar]
- Hawking, S.W.; Hertog, T. Living with ghosts. Phys. Rev. 2002, D65, 103515. [Google Scholar] [CrossRef]
- Cognola, G.; Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Zerbini, S. One-loop f(R) gravity in de Sitter universe. JCAP 2005, 0502, 010. [Google Scholar] [CrossRef]
- Cognola, G.; Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Zerbini, S. Dark energy in modified Gauss-Bonnet gravity: Late-time acceleration and the hierarchy problem. Phys. Rev. 2006, D73, 084007. [Google Scholar] [CrossRef]
- Oliva, J.; Ray, S. A new cubic theory of gravity in five dimensions: Black hole, Birkhoff’s theorem and C-function. arXiv 1003.4773. [CrossRef]
- Oliva, J.; Ray, S. A classification of six derivative lagrangians of gravity and static spherically symmetric solutions. [CrossRef]
- Cai, Y.F.; Easson, D.A. Black holes in an asymptotically safe gravity theory with higher derivatives. JCAP 2010, 1009, 002. [Google Scholar] [CrossRef]
- Berezhiani, Z.; Comelli, D.; Nesti, F.; Pilo, L. Exact spherically symmetric solutions in massive gravity. JHEP 2008, 0807, 130. [Google Scholar] [CrossRef]
- Deser, S.; Sarioglu, O.; Tekin, B. Spherically symmetric solutions of Einstein + non-polynomial gravities. Gen. Rel. Grav. 2008, 40, 1. [Google Scholar] [CrossRef]
- Clifton, T.; Barrow, J.D. The power of general relativity. Phys. Rev. 2005, D72, 103005. [Google Scholar] [CrossRef]
- Wald, R.M. Black hole entropy is the Noether charge. Phys. Rev. 1993, D48, 3427. [Google Scholar] [CrossRef]
- Visser, M. Dirty black holes: Entropy as a surface term. Phys. Rev. 1993, D48, 5697. [Google Scholar] [CrossRef]
- Faraoni, V. Black hole entropy in scalar-tensor and f(R) gravity: An overview. Entropy 2010, 12, 1246. [Google Scholar] [CrossRef]
- Brevik, I.H.; Nojiri, S.; Odintsov, S.D.; Vanzo, L. Entropy and universality of Cardy-Verlinde formula in dark energy universe. Phys. Rev. 2004, D70, 043520. [Google Scholar] [CrossRef]
- Brustein, R.; Gorbonos, D.; Hadad, M. Wald’s entropy is equal to a quarter of the horizon area in units of the effective gravitational coupling. Phys. Rev. 2009, D79, 044025. [Google Scholar] [CrossRef]
- Frolov, V.P.; Novikov, I.D. Black hole physics: Basic concepts and new developments; Kluwer Academic: Dordrecht, Netherlands, 1998. [Google Scholar]
- Kodama, H. Conserved energy flux for the spherically symmetric system and the back reaction problem in the black hole evaporation. Prog. Theor. Phys. 1980, 63, 1217. [Google Scholar] [CrossRef]
- Hayward, S.A. Unified first law of black-hole dynamics and relativistic thermodynamics. Class. Quant. Grav. 1998, 15, 3147. [Google Scholar] [CrossRef]
- Di Criscienzo, R.; Nadalini, M.; Vanzo, L.; Zerbini, S.; Zoccatelli, G. On the Hawking radiation as tunnellingfor a class of dynamical black holes. Phys. Lett. 2007, B657, 107. [Google Scholar] [CrossRef]
- Hayward, S.A.; Di Criscienzo, R.; Vanzo, L.; Nadalini, M.; Zerbini, S. Local Hawking temperature for dynamical black holes. Class. Quant. Grav. 2009, 26, 062001. [Google Scholar] [CrossRef]
- Di Criscienzo, R.; Hayward, S.A.; Nadalini, M.; Vanzo, L.; Zerbini, S. Hamilton–Jacobi tunneling method for dynamical horizons in different coordinate gauges. Class. Quant. Grav. 2010, 27, 015006. [Google Scholar] [CrossRef]
- Deser, S.; Tekin, B. New energy definition for higher curvature gravities. Phys. Rev. 2007, D75, 084032. [Google Scholar] [CrossRef]
- Abreu, G.; Visser, M. Tolman mass, generalized surface gravity, and entropy bounds. Phys. Rev. Lett. 2010, 105, 041302. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.D.; York, J.W. Quasilocal energy and conserved charges derived from the gravitational action. Phys. Rev. 1993, D47, 1407. [Google Scholar]
- Brown, J.D.; Creighton, J.; Mann, R.B. Temperature, energy and heat capacity of asymptotically anti-de Sitter black holes. Phys. Rev. 1994, D50, 6394. [Google Scholar] [CrossRef]
- Chan, K.C.K.; Horne, J.H.; Mann, R.B. Charged dilaton black holes with unusual asymptotics. Nucl. Phys. 1995, B447, 441. [Google Scholar] [CrossRef] [Green Version]
- Misner, C.W.; Sharp, D.H. Relativistic equations for adiabatic, spherically symmetric gravitational collapse. Phys. Rev 1964, 136, B571. [Google Scholar] [CrossRef]
- Hayward, S.A. Quasilocal gravitational energy. Phys. Rev. 1994, D49, 831. [Google Scholar] [CrossRef]
- Hayward, S. A. Gravitational energy in spherical symmetry. Phys. Rev. 1996, D53, 1938. [Google Scholar] [CrossRef]
- Maeda, H.; Nozawa, M. Generalized Misner-Sharp quasi-local mass in Einstein-Gauss-Bonnet gravity. Phys. Rev. 2008, D77, 064031. [Google Scholar]
- Cai, R.G.; Cao, L.M.; Hu, Y.P.; Ohta, N. Generalized Misner-Sharp energy in f(R) gravity. Phys. Rev. 2009, D80, 104016. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/.)
Share and Cite
Bellini, E.; Criscienzo, R.D.; Sebastiani, L.; Zerbini, S. Black Hole Entropy for Two Higher Derivative Theories of Gravity. Entropy 2010, 12, 2186-2198. https://doi.org/10.3390/e12102186
Bellini E, Criscienzo RD, Sebastiani L, Zerbini S. Black Hole Entropy for Two Higher Derivative Theories of Gravity. Entropy. 2010; 12(10):2186-2198. https://doi.org/10.3390/e12102186
Chicago/Turabian StyleBellini, Emilio, Roberto Di Criscienzo, Lorenzo Sebastiani, and Sergio Zerbini. 2010. "Black Hole Entropy for Two Higher Derivative Theories of Gravity" Entropy 12, no. 10: 2186-2198. https://doi.org/10.3390/e12102186
APA StyleBellini, E., Criscienzo, R. D., Sebastiani, L., & Zerbini, S. (2010). Black Hole Entropy for Two Higher Derivative Theories of Gravity. Entropy, 12(10), 2186-2198. https://doi.org/10.3390/e12102186