Black Hole Entropy in Scalar-Tensor and ƒ(R) Gravity: An Overview
Abstract
:1. Introduction
1.1. Metric and Palatini gravity as scalar-tensor theories
2. Scalar-tensor Gravity
3. Metric Gravity
4. Palatini Gravity
5. Dilaton Gravity (Metric and Palatini)
6. Conclusions
Acknowledgements
References
- Will, C.M. Theory and Experiment in Gravitational Physics; Cambridge University Press: Cambridge, UK, 1981. [Google Scholar]
- Schmidt, H.-J. Fourth order gravity: Equations, History, and applications to cosmology. Int. J. Geom. Meth. Phys. 2007, 4, 209–248. [Google Scholar] [CrossRef]
- Hehl, F.W.; Von Der Heyde, P.; Kerlick, G.D.; Nester, J.M. General relativity with spin and torsion: Foundations and prospects. Rev. Mod. Phys. 1976, 48, 393–416. [Google Scholar] [CrossRef]
- Fujii, Y.; Maeda, K. The Scalar-Tensor Theory of Gravitation; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Faraoni, V. Cosmology in Scalar-Tensor Gravity; Kluwer Academic: Dordrecht, the Netherlands, 2004. [Google Scholar]
- Callan, C.G., Jr.; Coleman, S.; Jackiw, R. A new improved energy-momentum tensor. Ann. Phys. 1970, 59, 42–73. [Google Scholar] [CrossRef]
- Chernikov, N.A.; Tagirov, E.A. Quantum theory of scalar fields in de Sitter space-time. Ann. Inst. H. Poincaré A 1968, 9, 109–141. [Google Scholar]
- Sonego, S.; Faraoni, V. Coupling to the curvature for a scalar field from the equivalence principle. Class. Quantum Grav. 1993, 10, 1185–1187. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; Leibundgut, B.; Phillips, M.M.; Reiss, D.; Schmidt, B.P.; Schommer, R.A.; Smith, R.C.; Spyromilio, J.; Stubbs, C.; Suntzeff, N.B.; Tonry, J. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Li, W.; Schmidt, B.P. Is there an indication of evolution of type Ia supernovae from their risetimes. Astron. J. 1999, 118, 2668–2674. [Google Scholar] [CrossRef]
- Riess, A.G.; Nugent, P.E.; Gilliland, R.L.; Schmidt, B.P.; Tonry, J.; Dickinson, M.; Thompson, R.I.; Budavári, T.; Casertano, S.; Evans, A.S.; Filippenko, A.V.; Livio, M.; Sanders, D.B.; Shapley, A.E.; Spinrad, H.; Steidel, C.C.; Stern, D.; Surace, J.; Veilleux, S. The farthest known supernova: Support for an accelerating universe and a glimpse of the epoch of deceleration. Astrophys. J. 2001, 560, 49–71. [Google Scholar] [CrossRef]
- Riess, A.G.; Strolger, L.-G.; Tonry, J.; Casertano, S.; Ferguson, H.C.; Mobasher, B.; Challis, P.; Filippenko, A.V.; Jha, S.; Li, W.; Chornock, R.; Kirshner, R.P.; Leibundgut, B.; Dickinson, M.; Livio, M.; Giavalisco, M.; Steidel, C.C.; Benitez, N.; Tsvetanov, Z. Type Ia supernova discoveries at z > 1 from the Hubble Space Telescope: Evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 2004, 607, 665–687. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Valle, M.D.; Deustua, S.; Ellis, R.S.; Fabbro, S.; Fruchter, A.; Goldhaber, G.; Goobar, A.; Groom, D.E.; et al. Discovery of a supernova explosion at half the age of the Universe and its cosmological implications. Nature 1998, 391, 51–54. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; Hook, I.M.; Kim, A.G.; Kim, M.Y.; Nunes, N.J.; Pain, R.; Pennypacker, C.R. Measurements of Ω and Λ from 42 high redshift supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Tonry, J.L.; Schmidt, B.P.; Barris, B.; Candia, P.; Challis, P.; Clocchiatti, A.; Coil, A.L.; Filippenko, A.V.; Garnavich, P.; Hogan, C.; et al. Cosmological results from high-z supernovae. Astrophys. J. 2003, 594, 1–24. [Google Scholar] [CrossRef]
- Knop, R.; Aldering, G.; Amanullah, R.; Astier, P.; Blanc, G.; Burns, M.S.; Conley, A.; Deustua, S.E.; Doi, M.; Ellis, R.; et al. New constraints on ΩM, ΩΛ, and w from an independent set of eleven high-redshift supernovae observed with HST. Astrophys. J. 2003, 598, 102–137. [Google Scholar] [CrossRef]
- Barris, B.; Tonry, J.; Blondin, S.; Challis, P.; Chornock, R.; Clocchiatti, A.; Filippenko, A.; Garnavich, P.; Holland, S.; Jha, S.; et al. 23 High redshift supernovae from the IFA Deep Survey: Doubling the SN sample at z > 0.7. Astrophys. J. 2004, 602, 571–594. [Google Scholar] [CrossRef]
- Linder, E.V. Resource Letter: Dark energy and the accelerating universe. Am. J. Phys. 2008, 76, 197–204. [Google Scholar] [CrossRef]
- Capozziello, S. Curvature quintessence. Int. J. Mod. Phys. D 2002, 11, 483–492. [Google Scholar] [CrossRef]
- Capozziello, S.; Carloni, S.; Troisi, A. Quintessence without scalar fields. Recent Res. Dev. Astron. Astrophys. 2003, 1, 625–670. [Google Scholar]
- Carroll, S.M.; Duvvuri, V.; Trodden, M.; Turner, M.S. Is cosmic speed-up due to new gravitational physics? Phys. Rev. D 2004, 70, 043528–043531. [Google Scholar] [CrossRef]
- Vollick, D.N. 1/R curvature corrections as the source of the cosmological acceleration. Phys. Rev. D 2003, 68, 063510–063516. [Google Scholar] [CrossRef]
- Sotiriou, T.P. f(R) gravity and scalar-tensor theory. Class. Quantum Grav. 2006, 23, 5117–5128. [Google Scholar] [CrossRef]
- Sotiriou, T.P. The significance of matter coupling in f(R) gravity. In Presented at the Eleventh Marcel Grossmann Meeting on General Relativity, Berlin, Germany, 23–29 July 2006; Kleinert, H., Jantzen, R.T., Ruffini, R., Eds.; World Scientific: Singapore, 2008; pp. 1223–1226. [Google Scholar]
- Sotiriou, T.P. Modified actions for gravity: Theory and phenomenology. PhD thesis, International School for Advanced Studies, Trieste, Italy, 2007. Available online: http://arxiv.org/abs/0710.4438 (accessed on 13 May 2010). [Google Scholar]
- Sotiriou, T.P.; Liberati, S. Metric-affine f(R) theories of gravity. Ann. Phys. 2007, 322, 935–966. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Liberati, S. The metric-affine formalism of f(R) gravity. Presented at the 12th Conference on Recent Developments in Gravity, Nafplio, Greece, 29 June–2 July 2006. J. Phys. Conf. Ser. 2007, 68, 012022–012028. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. f(R) theories of gravity. Rev. Mod. Phys. 2010, 82, 451–497. [Google Scholar] [CrossRef]
- De Felice, A.; Tsujikawa, S. f(R) theories. Living Rev. Relativity 2010, in press. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Introduction to modified gravity and gravitational alternatives for dark energy. Int. J. Geom. Meth. Mod. Phys. 2007, 4, 115–146. [Google Scholar] [CrossRef]
- Capozziello, S.; Francaviglia, M. Extended theories of gravity and their cosmological and astrophysical applications. Gen. Relat. Grav. 2008, 40, 357–420. [Google Scholar] [CrossRef]
- Straumann, N. Problems with modified theories of gravity, As alternatives to dark energy. In Presented at the conference of Beyond Einstein, Mainz, Germany, 22–26 September 2008.
- Faraoni, V. f(R) gravity: Successes and challenges. In Presented at the SIGRAV2008, 18th Congress of the Italian Society of General Relativity and Gravitation, Cosenza, Italy, 22–25 September 2008.
- Sotiriou, T.P. 6 + 1 lessons from f(R) gravity. Presented at the 13th Conference on Recent Developments in Gravity, Thessaloniki, Greece, 4–6 June 2008. J. Phys. Conf. Ser. 2009, 189, 012039–012049. [Google Scholar] [CrossRef]
- Capozziello, S.; De Laurentis, M.; Faraoni, V. A bird’s eye view of f(R) gravity. Open Astron. J. Available online: http://arxiv.org/abs/0909.4672 (accessed on 13 May 2010).
- Brans, C.H.; Dicke, R.H. Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 1961, 124, 925–935. [Google Scholar] [CrossRef]
- Bergmann, P.G. Comments on the scalar tensor theory. Int. J. Theor. Phys. 1968, 1, 25–36. [Google Scholar] [CrossRef]
- Wagoner, R.V. Scalar tensor theory and gravitational waves. Phys. Rev. D 1970, 1, 3209–3216. [Google Scholar] [CrossRef]
- Nordtvedt, K. Post-Newtonian metric for a general class of scalar tensor gravitational theories and observational consequences. Astrophys. J. 1970, 161, 1059–1067. [Google Scholar] [CrossRef]
- Wald, R.M. Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics; Chicago University Press: Chicago, IL, USA, 1995. [Google Scholar]
- Wald, R.M. The Thermodynamics of Black Holes. Living. Rev. Rel. 2001, 4, 6–51. [Google Scholar] [CrossRef]
- Wald, R.M. Gravitation, Thermodynamics, and quantum theory. Class. Quantum Grav. 1999, 16, A177–A190. [Google Scholar] [CrossRef]
- Jacobson, T.; Kang, G.; Myers, R.C. On black hole entropy. Phys. Rev. D 1994, 49, 6587–6598. [Google Scholar] [CrossRef]
- Jacobson, T. Thermodynamics of space-time: The Einstein equation of state. Phys. Rev. Lett. 1995, 75, 1260–1263. [Google Scholar] [CrossRef] [PubMed]
- Eling, C.; Guedens, R.; Jacobson, T. Non-equilibrium thermodynamics of spacetime. Phys. Rev. Lett. 2006, 96, 121301–121304. [Google Scholar] [CrossRef] [PubMed]
- Elizalde, E.; Silva, P.J. F (R) gravity equation of state. Phys. Rev. D 2008, 78, 061501–061504. [Google Scholar] [CrossRef]
- Chirco, G.; Liberati, S. Non-equilibrium thermodynamics of spacetime: The role of gravitational dissipation. Phys. Rev. D 2010, 81, 024016–024028. [Google Scholar] [CrossRef]
- Padmanabhan, T. Classical and quantum thermodynamics of horizons in spherically symmetric space-times. Class. Quantum Grav. 2002, 19, 5387–5408. [Google Scholar] [CrossRef]
- Padmanabhan, T. Gravity and the thermodynamics of horizons. Phys. Rept. 2005, 406, 49–125. [Google Scholar] [CrossRef]
- Paranjape, A.; Sarkar, S.; Padmanabhan, T. Thermodynamic route to field equations in Lanczos-Lovelock gravity. Phys. Rev. D 2006, 74, 104015–104023. [Google Scholar] [CrossRef]
- Kothawala, D.; Sarkar, S.; Padmanabhan, T. Einstein’s equations as a thermodynamic identity: The cases of stationary axisymmetric horizons and evolving spherically symmetric horizons. Phys. Lett. B 2007, 652, 338–342. [Google Scholar] [CrossRef]
- Nozawa, M.; Maeda, H. Dynamical black holes with symmetry in Einstein-Gauss-Bonnet gravity. Class. Quantum Grav. 2008, 25, 055009–055021. [Google Scholar] [CrossRef]
- Raychaudhuri, A.K.; Bagchi, B. Temperature dependent gravitational constant and black hole physics. Phys. Lett. B 1983, 124, 168–170. [Google Scholar] [CrossRef]
- Callan, C.; Myers, R.C.; Perry, M. Black holes in string theory. Nucl. Phys. B 1988, 311, 673–698. [Google Scholar] [CrossRef]
- Myers, R.C.; Simon, J.Z. Black hole thermodynamics in Lovelock gravity. Phys. Rev. D 1988, 38, 2434–2444. [Google Scholar] [CrossRef]
- Lu, M.; Wise, M. Black holes with a generalized gravitational action. Phys. Rev. D 1993, 47, 3095–3098. [Google Scholar] [CrossRef]
- Jacobson, T.; Myers, R.C. Black hole entropy and higher curvature interactions. Phys. Rev. Lett. 1993, 70, 3684–3687. [Google Scholar] [CrossRef] [PubMed]
- Visser, M. Dirty black holes: Entropy as a surface term. Phys. Rev. D 1993, 48, 5697–5705. [Google Scholar] [CrossRef] [Green Version]
- Creighton, J.D.E.; Mann, R.B. Quasilocal thermodynamics of dilaton gravity coupled to gauge fields. Phys. Rev. D 1995, 52, 4569–4587. [Google Scholar] [CrossRef]
- Myers, R.C. Black holes in higher curvature gravity. In Black Holes, Gravitational Radiation and the Universe: Essays in Honor of C.V. Vishveshwara; Vishveshwara, C.V., Iyer, B.R., Bhawal, B., Eds.; Kluwer Academic: Dordrecht, the Netherlands, 1999; p. 121. [Google Scholar]
- Wald, R.M. Black hole entropy is the Noether charge. Phys. Rev. D 1993, 48, 3427(R)–3431(R). [Google Scholar] [CrossRef]
- Iyer, V.; Wald, R.M. Some properties of Noether charge and a proposal for dynamical black hole entropy. Phys. Rev. D 1994, 50, 846–864. [Google Scholar] [CrossRef]
- Iyer, V.; Wald, R.M. A comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes. Phys. Rev. D 1995, 52, 4430–4439. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Hawking, S.W. Action integrals and partition functions in quantum gravity. Phys. Rev. D 1977, 15, 2752–2757. [Google Scholar] [CrossRef]
- Vollick, D.N. Noether charge and black hole entropy in modified theories of gravity. Phys. Rev. D 2007, 76, 124001–214005. [Google Scholar] [CrossRef]
- Briscese, F.; Elizalde, E. Black hole entropy in modified gravity models. Phys. Rev. D 2008, 77, 044009–044013. [Google Scholar] [CrossRef]
- Brustein, R.; Gorbonos, D.; Hadad, M. Wald’s entropy is equal to a quarter of the horizon area in units of the effective gravitational coupling. Phys. Rev. D 2009, 79, 044025–044033. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black holes and entropy. Phys. Rev. D 1973, 7, 2333–2346. [Google Scholar] [CrossRef]
- Hawking, S.W. Black holes and entropy. Comm. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Teyssandier, P.; Tourrenc, P. The Cauchy problem for the R+R2 theories of gravity without torsion. J. Math. Phys. 1983, 24, 2793–2799. [Google Scholar] [CrossRef]
- Whitt, B. Fourth order gravity as general relativity plus matter. Phys. Lett. B 1984, 145, 176–178. [Google Scholar] [CrossRef]
- Barrow, J.D. The premature recollapse problem in closed inflationary universes. Nucl. Phys. B 1988, 296, 697–709. [Google Scholar] [CrossRef]
- Barrow, J.D.; Cotsakis, S. Inflation and the conformal structure of higher order gravity theories. Phys. Lett. B 1988, 214, 515–518. [Google Scholar] [CrossRef]
- Wands, D. Extended gravity theories and the Einstein-Hilbert action. Class. Quantum Grav. 1994, 11, 269–280. [Google Scholar] [CrossRef]
- Chiba, T. 1/R gravity and scalar-tensor gravity. Phys. Lett. B 2005, 575, 1–3. [Google Scholar] [CrossRef]
- Dolgov, A.D.; Kawasaki, M. Can modified gravity explain accelerated cosmic expansion? Phys. Lett. B 2003, 573, 1–4. [Google Scholar] [CrossRef]
- Faraoni, V. Matter instability in modified gravity. Phys. Rev. D 2006, 74, 104017–104020. [Google Scholar] [CrossRef]
- Faraoni, V. de Sitter space and the equivalence between f(R) and scalar-tensor gravity. Phys. Rev. D 2007, 75, 067302–067305. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Modified gravity with negative and positive powers of curvature: Unification of inflation and cosmic acceleration. Phys. Rev. D 2003, 68, 123512–123534. [Google Scholar] [CrossRef]
- Wald, R.M. General Relativity; Chicago University Press: Chicago, IL, USA, 1984; pp. 450–469. [Google Scholar]
- Exirifard, Q.; Sheikh-Jabbari, M.M. Lovelock gravity at the crossroads of Palatini and metric formulations. Phys. Lett. B 2008, 661, 158–161. [Google Scholar] [CrossRef]
- Kang, G. Black hole area in Brans-Dicke theory. Phys. Rev. D 1996, 54, 7483–7489. [Google Scholar] [CrossRef]
- Scheel, M.A.; Shapiro, S.L.; Teukolsky, S.A. Collapse to black holes in Brans-Dicke theory. I. Horizon boundary conditions for dynamical spacetimes. Phys. Rev. D 1995, 51, 4208–4235. [Google Scholar] [CrossRef]
- Scheel, M.A.; Shapiro, S.L.; Teukolsky, S.A. Collapse to black holes in Brans-Dicke theory. II. Comparison with general relativity. Phys. Rev. D 1995, 51, 4236–4249. [Google Scholar] [CrossRef]
- Kerimo, J.; Kalligas, D. Gravitational collapse of collisionless matter in scalar-tensor theories: Scalar waves and black hole formation. Phys. Rev. D 1998, 58, 104002. [Google Scholar] [CrossRef]
- Kerimo, J. Dynamical black holes in scalar-tensor theories. Phys. Rev. D 2000, 62, 104005. [Google Scholar] [CrossRef]
- Dicke, R.H. Mach’s Principle and invariance under transformation of units. Phys. Rev. 1962, 125, 2163–2167. [Google Scholar] [CrossRef]
- Koga, J.; Maeda, K. Equivalence of black hole thermodynamics between a generalized theory of gravity and the Einstein theory. Phys. Rev. D 1998, 58, 064020. [Google Scholar] [CrossRef]
- Flanagan, E.E. Higher order gravity theories and scalar tensor theories. Class. Quantum Grav. 2004, 21, 417–426. [Google Scholar] [CrossRef]
- Faraoni, V.; Nadeau, S. (Pseudo)issue of the conformal frame revisited. Phys. Rev. D 2007, 75, 023501–023529. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Liberati, S.; Faraoni, V. Theory of gravitation theories: A no-progress report. Int. J. Mod. Phys. D 2008, 17, 393–423. [Google Scholar] [CrossRef]
- Degasperis, A.; Ruijsenaars, S.N.M. Newton-equivalent Hamiltonians for the harmonic oscillator. Ann. Phys. 2001, 293, 92–109. [Google Scholar] [CrossRef]
- Calogero, F.; Degasperis, A. On the quantization of Newton-equivalent Hamiltonians. Am. J. Phys. 2004, 72, 1202–1204. [Google Scholar] [CrossRef]
- Glass, E.N.; Scanio, J.J.G. Canonical transformation to the free particle. Am. J. Phys. 1977, 45, 344–347. [Google Scholar] [CrossRef]
- Campanelli, M.; Lousto, C. Are black holes in Brans-Dicke theory precisely the same as in general relativity? Int. J. Mod. Phys. D 1993, 2, 451–462. [Google Scholar] [CrossRef]
- Lousto, C.; Campanelli, M. On Brans-Dicke black holes. In The Origin of Structure in the Universe; Gunzig, E., Nardone, P., Eds.; Kluwer Academic: Dordrecht, the Netherlands, 1993; p. 123. [Google Scholar]
- Krori, K.D.; Bhattacharjee, D.R. Kerr-like metric in Brans.Dicke theory. J. Math. Phys. 1982, 23, 637–638. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Constantinidis, C.P.; Evangelista, R.L.; Fabris, J.C. Electrically charged cold black holes in scalar tensor theories. Int. J. Mod. Phys. D 1999, 8, 481–505. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Clement, G.; Constantinidis, C.P.; Fabris, J.C. Structure and stability of cold scalar-tensor black holes. Phys. Lett. A 1998, 243, 121–127. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Clement, G.; Constantinidis, C.P.; Fabris, J.C. Cold scalar tensor black holes: Causal structure, Geodesics, Stability. Gravit. Cosmol. 1998, 4, 128–138. [Google Scholar]
- Nandi, K.K.; Bhadra, A.; Alsing, P.M.; Nayak, T.B. Tidal forces in cold black hole space-times. Int. J. Mod. Phys. D 2001, 10, 529–538. [Google Scholar] [CrossRef]
- Zavlavskii, O.B. Thermodynamics of black holes with an infinite effective area of a horizon. Class. Quantum Grav. 2002, 19, 3783–3806. [Google Scholar] [CrossRef]
- Yazadjiev, S.S. Cold scalar-tensor black holes coupled to a massless scalar field. Available on line: http://arxiv.org/abs/gr-qc/0305053 (access on 13 May 2010).
- Bronnikov, K.A.; Fabris, J.C.; Pinto-Neto, N.; Rodrigues, M.E. Cold black holes in the Einstein-scalar field system. Available online: http://arxiv.org/abs/gr-qc/0604055 (accessed on 13 May 2010).
- Bronnikov, K.A.; Chernakova, M.S.; Fabris, J.C.; Pinto-Neto, N.; Rodrigues, M.E. Cold black holes and conformal continuations. Int. J. Mod. Phys. D 2008, 17, 25–42. [Google Scholar] [CrossRef]
- Hawking, S.W. Black holes in the Brans-Dicke theory of gravitation. Comm. Math. Phys. 1972, 25, 167–171. [Google Scholar] [CrossRef]
- Matsuda, T. On the gravitational collapse in Brans-Dicke theory of gravity. Prog. Theor. Phys. 1962, 47, 738–740. [Google Scholar] [CrossRef]
- Romero, C.; Barros, A. Brans-Dicke cosmology and the cosmological constant: The spectrum of vacuum solutions. Astr. Sp. Sci. 1992, 192, 263–274. [Google Scholar] [CrossRef]
- Romero, C.; Barros, A. Does Brans-Dicke theory of gravity go over to the general relativity when ω → ∞? Phys. Lett. A 1993, 173, 243–246. [Google Scholar] [CrossRef]
- Paiva, F.M.; Romero, C. The limits of Brans-Dicke spacetimes: A coordinate-free approach. Gen. Relat. Gravit. 1993, 25, 1305–1317. [Google Scholar] [CrossRef]
- Paiva, F.M.; Reboucas, M.; MacCallum, M. On limits of space-times: A coordinate-free approach. Class. Quantum Grav. 1993, 10, 1165–1178. [Google Scholar] [CrossRef]
- Anchordoqui, L.A.; Perez-Bergliaffa, S.E.; Trobo, M.L.; Birman, G.S. Evolving wormhole geometries. Phys. Rev. D 1998, 57, 829–833. [Google Scholar] [CrossRef]
- Banerjee, N.; Sen, S. Does Brans-Dicke theory always yield general relativity in the infinite ω limit? Phys. Rev. D 1997, 56, 1334–1337. [Google Scholar] [CrossRef]
- Faraoni, V. The ω → ∞ limit of Brans Dicke theory. Phys. Lett. A 1998, 245, 26–30. [Google Scholar] [CrossRef]
- Faraoni, V. Illusions of general relativity in Brans-Dicke gravity. Phys. Rev. D 1999, 59, 084021–084036. [Google Scholar] [CrossRef]
- Chauvineau, B. On the limit of Brans-Dicke theory when ω → ∞. Class. Quantum Grav. 2003, 20, 2617–2625. [Google Scholar] [CrossRef]
- Chauvineau, B. Stationarity and large ω Brans-Dicke solutions versus general relativity. Gen. Relat. Gravit. 2007, 39, 297–306. [Google Scholar] [CrossRef]
- Kim, H. Thermodynamics of black holes in Brans-Dicke gravity. Available online: http://arxiv.org/abs/gr-qc/9706044 (accessed on 13 May 2010).
- Brevik, I.; Nojiri, S.; Odintsov, S.D.; Vanzo, L. Entropy and universality of the Cardy-Verlinde formula in a dark energy universe. Phys. Rev. D 2004, 70, 043520. [Google Scholar] [CrossRef]
- Cognola, G.; Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Zerbini, S. One-loop f(R) gravity in de Sitter universe. J. Cosmol. Astropart. Phys. 2005, 0502:010. [Google Scholar] [CrossRef]
- Myung, Y.S.; Kim, Y.-W. Thermodynamics of Horava-Lifshitz black holes. Phys.Lett.B 2009, 679, 504–509. [Google Scholar] [CrossRef]
- Akbar, M.; Cai, R.-G. Friedmann equations of FRW universe in scalar-tensor gravity, f(R) gravity and first law of thermodynamics. Phys. Lett. B 2006, 635, 7–10. [Google Scholar] [CrossRef]
- Wang, P. Horizon entropy in modified gravity. Phys. Rev. D 2005, 72, 024030–024033. [Google Scholar] [CrossRef]
- Gong, Y.; Wang, A. Friedmann equations and thermodynamics of apparent horizons. Phys. Rev. Lett. 2007, 99, 211301–211304. [Google Scholar] [CrossRef] [PubMed]
- Mosheni Sadjadi, H. Generalized second law in modified theory of gravity. Phys. Rev. D 2007, 76, 104024–104032. [Google Scholar] [CrossRef]
- Cai, R.-G.; Cao, L.-M. Thermodynamics of apparent horizon in brane world scenario. Nucl. Phys. B 2007, 785, 135–148. [Google Scholar] [CrossRef]
- Cai, R.-G.; Cao, L.-M. Unified first law and the thermodynamics of the apparent horizon in the FRW universe. Phys. Rev. D 2007, 75, 064008–064030. [Google Scholar] [CrossRef]
- Cai, R.-G.; Cao, L.-M.; Hu, Y.-P. Corrected entropy-area relation and modified Friedmann equations. J. High Energy Phys. 2008, 0808:090. [Google Scholar]
- Cai, R.-G. A note on thermodynamics of black holes in Lovelock gravity. Phys. Lett. B 2004, 582, 237–242. [Google Scholar] [CrossRef]
- Correa-Borbonet, L.A. Corrections to the entropy in higher order gravity. Braz. J. Phys. 2005, 35, 1145–1148. [Google Scholar] [CrossRef]
- Dubovsky, S.L.; Sibiryakov, S.M. Spontaneous breaking of Lorentz invariance, black holes and perpetuum mobile of the 2nd kind. Phys. Lett. B 2006, 638, 509–514. [Google Scholar] [CrossRef]
- Eling, C.; Foster, B.Z.; Jacobson, T.; Wall, A.C. Lorentz violation and perpetual motion. Phys. Rev. D 2007, 75, 101502–101506. [Google Scholar] [CrossRef]
- Jacobson, T.; Wall, A.C. Black hole thermodynamics and Lorentz symmetry. Available online: http://arxiv.org/abs/0804.2720 (accessed on 13 May 2010).
- Sagi, E.; Bekenstein, J.D. Black holes in the TeVeS theory of gravity and their thermodynamics. Phys. Rev. D 2008, 77, 024010–024021. [Google Scholar] [CrossRef]
© 2010 by the author; licensee MDPI, Basel, Switzerland. This article is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Faraoni, V. Black Hole Entropy in Scalar-Tensor and ƒ(R) Gravity: An Overview. Entropy 2010, 12, 1246-1263. https://doi.org/10.3390/e12051246
Faraoni V. Black Hole Entropy in Scalar-Tensor and ƒ(R) Gravity: An Overview. Entropy. 2010; 12(5):1246-1263. https://doi.org/10.3390/e12051246
Chicago/Turabian StyleFaraoni, Valerio. 2010. "Black Hole Entropy in Scalar-Tensor and ƒ(R) Gravity: An Overview" Entropy 12, no. 5: 1246-1263. https://doi.org/10.3390/e12051246
APA StyleFaraoni, V. (2010). Black Hole Entropy in Scalar-Tensor and ƒ(R) Gravity: An Overview. Entropy, 12(5), 1246-1263. https://doi.org/10.3390/e12051246