Exact Solutions in Modified Gravity Models
Abstract
:1. Introduction
2. Exact Solutions in Stäcke and Homogeneous Spaces
- (1)
- , , are pairwise unequal and real. Then
- (2)
- is real,
- (3)
- , are real
- (4)
3. Modified Gravity
4. Conclusions
References
- Carter, B. Hamilton–Jacobi and Schrodinger separable solutions of Einsteins equations. Commum. Math. Phys. 1968, 10, 280–310. [Google Scholar]
- Bagrov, V.G.; Obukhov, V.V.; Shapovalov, A.V. Special Stäckel electrovac space times. Pramana J. Phys. 1986, 26, 93–98. [Google Scholar] [CrossRef]
- Bagrov, V.G.; Obukhov, V.V.; Osetrin, K.E. Classification of null-Stäckel electrovac metrics with cosmological constant. Gen. Relat. Gravit. 1988, 20, 1141–1154. [Google Scholar] [CrossRef]
- Bagrov, V.G.; Obukhov, V.V. New method of integration for the Dirac equation on a curved space-time. J. Math. Phys. 1992, 33, 2279–2289. [Google Scholar] [CrossRef]
- Bagrov, V.G.; Obukhov, V.V.; Sakhapov, A.G. Integration of the Einstein-Dirac equations. J. Math. Phys. 1996, 37, 5599–5610. [Google Scholar] [CrossRef]
- Bagrov, V.G.; Obukhov, V.V. Exact solutions of vacuum Brans-Dicke equations. Sov. Phys. J. 1992, 35, 70–73. [Google Scholar] [CrossRef]
- Bagrov, V.G.; Obukhov, V.V. Accurate integration of scalar equations in multiscalar-tensor theory. Russ. Phys. J. 1995, 38, 171–176. [Google Scholar] [CrossRef]
- Obukhov, V.V. Cosmological solution in the scalar-tensor theory of gravity. Russ. Phys. J. 1997, 40, 112–115. [Google Scholar] [CrossRef]
- Obukhov, V.V. Exact cosmological solutions of field equations of a tensor-multiscalar theory. Grav. Cosmol. 1996, 2, 256–258. [Google Scholar]
- Obukhov, V.V. The Stäckel Spaces in Gravity Theory; Tomsk State Pedagogical Uviversity Press: Tomsk, Russia, 2006. [Google Scholar]
- Friedman, A. Über die Krümmung des Raumes. Zs Phys. 1922, 10, 377–380. [Google Scholar] [CrossRef]
- Friedman, A. Über die Krümmung des Raumes. Zs Phys. 1924, 21, 326–332. [Google Scholar]
- Taub, A.H. Empty space-times admitting a three parameter group of motions. Ann. Math. 1951, 53, 472–490. [Google Scholar] [CrossRef]
- Ryan, M.; Shepley, L. Homogeneous Relativistic Cosmologies; Princeton University Press: Princeton, NJ, USA, 1975. [Google Scholar]
- Chauvet, P.; Cervantes-Cota, J.L. Isotropization of bianchi-type cosmological solutions in brans-dicke theory. Phys. Rev. D 1995, 52, 3416–3423. [Google Scholar] [CrossRef] [Green Version]
- Chiba, T.; Mukohyama, S.; Nakamura, T. Anisotropy of the cosmic background radiation implies the violation of the strong energy condition in bianchi type I universe. Phys. Lett. B 1997, 408, 47–51. [Google Scholar] [CrossRef]
- Bergamini, R.; Sedici, P.; Verrocchio, P. Inflation for Bianchi IX model. Phys. Rev. D 1997, 55, 1896–1900. [Google Scholar] [CrossRef]
- Byland, S.; Scialom, D. Evolution of the Bianchi I, the Bianchi III and the Kantowski-Sachs Universe: Isotropization and Inflation. Phys.Rev. D. 1998, 57, 6065–6074. [Google Scholar] [CrossRef]
- Nojiri, S.; Obregon, O.; Odintsov, S.D.; Osetrin, K.E. Can primordial wormholes be induced by GUTs at the early universe? Phys. Lett. B 1999, 458, 19–28. [Google Scholar] [CrossRef]
- Cervantes-Cota, J. L.; Nahmad, M. Isotropization of Bianchi type models and a new FRW solution in Brans-Dicke theory. Gen. Relat. Gravit. 2001, 33, 767–780. [Google Scholar] [CrossRef]
- Aguirregabiria, J.M.; Feinstein, A.; Ibanez, J. Exponential-potential scalar field universes I: The Bianchi I models. Phys. Rev. D 1993, 48, 4662–4668. [Google Scholar] [CrossRef]
- Cheng, A.D.Y.; D’Eath, P.D. Diagonal quantum Bianchi type IX models in N = 1 supergravity. Class. Quantum Grav. 1996, 13, 3151–3162. [Google Scholar] [CrossRef]
- Randall, L.; Sundrum, R. An Alternatine to Compactification. Phys. Rev. Lett. 1999, 83, 4690–4693. [Google Scholar] [CrossRef]
- Csaki, C.; Joshu, E.; Grosean, C. Gravitational lorentz violations and adjustment of the cosmological constant in asymmetrically warped space-times. Nucl. Phys. B 2001, 604, 312–342. [Google Scholar] [CrossRef]
- Barut, A.O.; Duru, I.H. Exact solutions of the Dirac equation in spatially flat Robertson-Walker spase-times. J. Math. Phys. 1987, 36, 3705–3711. [Google Scholar]
- Kovalyov, M.; Legare, M. The Dirac equation in Robertson-Walker spaces: A class of solutions. J. Math. Phys. 1990, 31, 191–198. [Google Scholar] [CrossRef]
- Villalba, V.H.; Percoco, U. Separation of variables and exact solution of Dirac and Weyl equations in Robertson-Walker space-times. J. Math. Phys. 1990, 31, 715–720. [Google Scholar] [CrossRef]
- Note Guello, E.A.; Capelas de Oliveira, E. Klein-Gordon and Dirac equations in deSitter space-time. Int. J. Theor. Phys . 1990, 38, 585–598. [Google Scholar]
- Gavrilov, S.P.; Gitman, D.M.; Goncalves, A.E. Quantum spinor fields in FRW Universe with a constant electromagnetic background. Int. J. Mod. Phys. A 1997, 12, 4837–4868. [Google Scholar] [CrossRef]
- Makarenko, A.N.; Obukhov, V.V.; Osetrin, K.E. Integrability of Einstein-Weyl equations for spatially homogeneous models of type III by Bianchi. Russ. Phys. J. 2002, 45, 49–55. [Google Scholar] [CrossRef]
- Bagrov, V.G.; Makarenko, A.N.; Obukhov, V.V.; Osetrin, K.E. Spinor fields in homogeneous cosmological models. Gravit. Cosmol. Suppl. 2002, 8, 3–5. [Google Scholar]
- Makarenko, A.N.; Obukhov, V.V. Cosmological solution of the Einstein-Weyl equation. Russ. Phys. J. 1998, 41, 1124–1133. [Google Scholar] [CrossRef]
- Sahni, V.; Starobinsky, A. Reconstructing dark energy. Int. J. Mod. Phys. D 2006, 15, 2105–2132. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Meth. Mod. Phys. 2007, 4, 115–146. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59–144. [Google Scholar] [CrossRef]
- Capozziello, S.; Francaviglia, M. Extended theories of gravity and their cosmological and astrophysical applications. Gen. Relat. Gravit. 2008, 40, 357–420. [Google Scholar] [CrossRef]
- Capozziello, S.; Faraoni, V. Beyond Einstein Gravity: A Survey of Gravitational Theories for Cosmology and Astrophysics; Springer: Berlin, Heidelberg, Germany, 2010. [Google Scholar]
- Lobo, F.S.N. The dark side of gravity: Modified theories of gravity. 2008; arXiv:0807.1640. [Google Scholar]
- Sami, M.; Toporensky, A.; Tretjakov, P.V.; Tsujikawa, S. The fate of (phantom) dark energy universe with string curvature corrections. Phys. Lett. B 2005, 619, 193–200. [Google Scholar] [CrossRef]
- Alimohammadi, M.; Ghalee, A. Remarks on generalized Gauss-Bonnet dark energy. Phys. Rev. D 2009, 79, 063006:1–063006:7. [Google Scholar] [CrossRef]
- de Felice, A.; Tsujikawa, S. Solar system constraints on f(G) gravity models. Phys. Rev. D 2009, 80, 063516:1–063516:15. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Modified Gauss-Bonnet theory as gravitational alternative for dark energy. Phys. Lett. B 2005, 631, 1–6. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Sasaki, M. Gauss-Bonnet dark energy. Phys. Rev. D 2005, 71, 123509:1–123509:7. [Google Scholar] [CrossRef]
- Myrzakulov, R.; Saez-Gomez, D.; Tureanu, A. On the ΛCDM Universe in f(G) gravity. Gen. Rel. Grav. 2011, 43, 1671–1684. [Google Scholar] [CrossRef]
- Elizalde, E.; Myrzakulov, R.; Obukhov, V.V.; Saez-Gomez, D. LambdaCDM epoch reconstruction from F(R,G) and modified Gauss-Bonnet gravities. Class. Quant. Grav. 2010, 27, 095007:1–095007:14. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Riess, A.G.; Kirshner, R.P.; Schmidt, B.P.; Jha, S.; Challis, P.; Garnavich, P.M.; Esin, A.A.; Carpenter, C.; Grashius, R.; Schild, R.E.; et al. BV RI light curves for 22 type Ia supernovae. Astron. J. 1999, 117, 707–724. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Valle, M.D.; Deustua, S.; Ellis, R.S.; Fabbro, S.; Fruchter, A.; Goldhaber, G.; Groom, D.E.; Hook, I.M.; et al. Discovery of a supernova explosion at half the age of the universe and its cosmological implications. Nature 1998, 391, 51–54. [Google Scholar] [CrossRef]
- Hicken, M.; Wood-Vasey, W.M.; Blondin, S.; Challis, P.; Jha, S.; Kelly, P.L.; Rest, A.; Kirshner, R.P. Improved dark energy constraints from 100 new cfa supernova type ia light curves. Astrophys. J. 2009, 700, 1097–1140. [Google Scholar] [CrossRef]
- Dunkley, J.; Spergel, D.N.; Komatsu, E.; Hinshaw, G.; Larson, D.; Nolta, M.R.; Odegard, N.; Page, L.; Bennett, C.L.; Gold, B.; et al. Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological interpretation. Astrophys. J. Suppl. 2009, 180, 330–376. [Google Scholar] [CrossRef]
- Percival, W.J.; Beth, A.; Reid; Eisenstein, D.J.; Bahcall, N.A.; Budavari, T.; Frieman, J.A.; Fukugita, M.; Gunn, J.E.; Ivezic, Z.; Knapp, G.R.; et al. Baryon acoustic oscillations in the sloan digital sky survey data release 7 galaxy sample. Mon. Not. Roy. Astron. Soc. 2010, 401, 2148–2168. [Google Scholar] [CrossRef] [Green Version]
- Cognola, G.; Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Zerbini, S. One-loop f(R) gravity in de Sitter universe. JCAP 2005, 2005. [Google Scholar] [CrossRef]
- Sebastiani, L.; Zerbini, S. Static spherically symmetric solutions in f(r) gravity. Eur. Phys. J. C 2011, 71, 1591:1–1591:8. [Google Scholar] [CrossRef]
- Elizalde, E.; Makarenko, A.N.; Obukhov, V.V.; Osetrin, K.E.; Filippov, A.E. Stationary vs. singular points in an accelerating FRW cosmology derived from six-dimensional Einstein-Gauss-Bonnet gravity. Phys. Lett. B 2007, 644, 1–6. [Google Scholar] [CrossRef]
- Kirnos, I.V.; Makarenko, A.N. Accelerating cosmologies in Lovelock gravity with dilaton. Open Astron.J. 2010, 3, 37–48. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Makarenko, A.N.; Obukhov, V.V. Exact Solutions in Modified Gravity Models. Entropy 2012, 14, 1140-1153. https://doi.org/10.3390/e14071140
Makarenko AN, Obukhov VV. Exact Solutions in Modified Gravity Models. Entropy. 2012; 14(7):1140-1153. https://doi.org/10.3390/e14071140
Chicago/Turabian StyleMakarenko, Andrey N., and Valery V. Obukhov. 2012. "Exact Solutions in Modified Gravity Models" Entropy 14, no. 7: 1140-1153. https://doi.org/10.3390/e14071140
APA StyleMakarenko, A. N., & Obukhov, V. V. (2012). Exact Solutions in Modified Gravity Models. Entropy, 14(7), 1140-1153. https://doi.org/10.3390/e14071140