Numerical Study of Entropy Generation in a Flowing Nanofluid Used in Micro- and Minichannels
Abstract
:1. Introduction
2. Methodology
2.1. Thermal Properties of Nanofluids
2.2. Microchannels
2.3. Minichannels
All the input data for calculation | |
---|---|
Data | Values |
Tin | 300 K |
∆T = (Tout-Tin) | 5 K |
Length of channel | 1 m |
Base fluid (water) density | 1,000 kg/m3 |
Base fluid conductivity | 0.6 W/mK |
Base fluid viscosity | 0.001 N s/m2 |
Base fluid Cp | 4,180 kJ/kg K |
Particle (alumina) density | 3,900 kg/m3 |
Particle conductivity | 40 W/m K |
Particle Cp | 880 kJ/kg K |
Laminar flows | |
(Friction factor) ƒ | 64/Re |
(Heat flux) q'' | 2,500 (w/m2) |
(Reynolds) Re | 1,500 |
(Nusselt) Nu | 48/11 |
The calculation of entropy generation in microchannel | |||||
---|---|---|---|---|---|
Base Fluid | Nanofluid | ||||
Volume Fraction | 0 | 0.02 | 0.06 | 0.1 | 0.14 |
Ṡgen, thermal (kJ/kgK) | 2.083E-7 | 1.929E-7 | 1.679E-7 | 1.488E-7 | 1.3354E-7 |
Ṡgen, frictional (kJ/kgK) | 0.0754 | 0.116384 | 0.2241 | 0.36246 | 0.46401 |
Total (kJ/kgK) | 0.0754 | 0.116385 | 0.2241 | 0.36246 | 0.46401 |
Be (Bejan number) | 3.76E-7 | 2.7E-7 | 2.7E-7 | 1.92E-7 |
The calculations of entropy generation in minichannels | |||||
---|---|---|---|---|---|
Base Fluid | Nanofluid | ||||
Volume Fraction | 0 | 0.02 | 0.06 | 0.1 | 0.14 |
Ṡgen, thermal (kJ/kgK) | 7.4994E-4 | 6.944E-4 | 6.048E-4 | 5.357E-4 | 4.801E-4 |
Ṡgen, frictional (kJ/kgK) | 2.0942E-5 | 3.233E-5 | 6.224E-5 | 1.007E-4 | 1.464E-4 |
total (kJ/kgK) | 7.7088E-4 | 7.267E-4 | 6.67E-4 | 6.364E-4 | 6.272E-4 |
Be (Bejan number) | 1.256 | 1.397 | 1.594 | 1.873 |
- = entropy generation due to thermal irreversibility and
- = entropy generation due to frictional irreversibility.
4. Conclusions
Acknowledgments
Nomenclature
Ф | volume fraction | Cp | Specific heat J/KG. k |
ƒ | friction factor | K | thermal conductivity |
D | diameter of tube, m | N | shape constant |
Nu | Nusselt Number | Ρ | density |
Re | Reynolds Number | ṁ | mass flow rate |
Be | Bejan Number | µ | Viscosity |
Ṡgen | entropy generation per unit length, W/m.k | Subscript | |
heat flux per unit length, W/m | BF | base fluid | |
Cµ | viscosity coefficient | NF | nanofluid |
Ck | thermal conductivity coefficient | P | nanoparticles |
References
- Chopkar, M.; Das, P.K.; Manna, I. Synthesis and characterization of nanofluid for advanced heat transfer applications. Scripta. Mater. 2006, 55, 549–552. [Google Scholar] [CrossRef]
- Masuda, H.; Ebata, A.; Teramae, K.; Hishinuma, N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu. Bussei 1993, 7, 227–233. [Google Scholar] [CrossRef]
- Choi, S.U.S.; Eastman, J. Enhancing Thermal Conductivity of Fluids with Nanoparticles; Argonne National Lab.: Argonne, Illinois, USA, 1995. [Google Scholar]
- Ebrahimnia-Bajestan, E.; Niazmand, H.; Duangthongsuk, W.; Wongwises, S. Numerical investigation of effective parameters in convective heat transfer of nanofluids flowing under a laminar flow regime. Int. J. Heat Mass Trans. 2011, 54, 4376–4388. [Google Scholar] [CrossRef]
- Abouali, O.; Ahmadi, G. Computer simulations of natural convection of single phase nanofluids in simple enclosures: A critical review. Appl. Therm. Engin. 2011, 36, 1–13. [Google Scholar] [CrossRef]
- Afshar, H.; Shams, M.; Nainian, S.M.M.; Ahmadi, G. Two-phase study of fluid flow and heat transfer in gas-solid flows (nanofluids). Appl. Mech. Mater. 2012, 110, 3878–3882. [Google Scholar] [CrossRef]
- Choi, S.; Zhang, Z.; Keblinski, P. Nanofluids, Encyclopedia of Nanoscience and Nanotechnology; Nalwa, H.S., Ed.; American Scientific Publisher: NY, USA, 2004; Volume 5, pp. 757–773. [Google Scholar]
- Murshed, S.; Leong, K.; Yang, C. Thermophysical and electrokinetic properties of nanofluids—A critical review. Appl. Ther. Engin. 2008, 28, 2109–2125. [Google Scholar] [CrossRef]
- Singh, P.K.; Anoop, K.; Sundararajan, T.; Das, S.K. Entropy generation due to flow and heat transfer in nanofluids. Inter. J. Heat Mass Trans. 2010, 53, 4757–4767. [Google Scholar] [CrossRef]
- Prasher, R.; Song, D.; Wang, J.; Phelan, P. Measurements of nanofluid viscosity and its implications for thermal applications. Appl. Phys. Lett. 2006, 89, 133108–133103. [Google Scholar] [CrossRef]
- Garg, J.; Poudel, B.; Chiesa, M.; Gordon, J.; Ma, J.; Wang, J.; Ren, Z.; Kang, Y.; Ohtani, H.; Nanda, J. Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. J. Appl. Phys. 2008, 103, 074301–074306. [Google Scholar] [CrossRef]
- Bejan, A. Second law analysis in heat transfer. Energy 1980, 5, 720–732. [Google Scholar] [CrossRef]
- Bejan, A. General criterion for rating heat-exchanger performance. Inter. J. Heat Mass Transfer. 1978, 21, 655–658. [Google Scholar] [CrossRef]
- Cengel, Y.A.; Boles, M.A. Thermodynamics: An Engineering Approach; McGraw-Hill Higher Education: New York, NY, USA, 2006. [Google Scholar]
- Carnahan, W.; Ford, K.W.; Prosperetti, A.; Rochlin, G.I.; Rosenfeld, A.H.; Ross, M.H.; Rothberg, J.E.; Seidel, G.M.; Socolow, R.H. Efficient use of energy: A physics perspective. New York: Am. Phys. Society: January. Study Report 1975, 399, 242–773. [Google Scholar]
- Bouabid, M.; Magherbi, M.; Hidouri, N.; Brahim, A.B. Entropy generation at natural convection in an inclined rectangular cavity. Entropy 2011, 13, 1020–1033. [Google Scholar] [CrossRef]
- Bejan, A. Chapter 5. In Entropy Generation through Heat and Fluid Flow; John Willy and Sons: NY, USA, 1982. [Google Scholar]
- Bejan, A.A. Study of entropy generation in fundamental convective heat transfer. J. Heat Trans. 1979, 101, 718–725. [Google Scholar] [CrossRef]
- Hamilton, R.; Crosser, O. Thermal conductivity of heterogeneous two-component systems. Ind. Engin. Chem. Funda. 1962, 1, 187–191. [Google Scholar] [CrossRef]
- Einstein, A. Berichtigung zu meiner arbeit:, Eine neue bestimmung der moleküldimensionen. Ann. Phys. 1911, 14, 591–592. [Google Scholar] [CrossRef]
- Zhang, X.; Gu, H.; Fujii, M. Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exper. Therm. Fluid Sci. 2007, 31, 593–599. [Google Scholar] [CrossRef]
- Xie, H.; Wang, J.; Xi, T.; Liu, Y.; Ai, F.; Wu, Q. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J. Appl. Phys. 2002, 91, 4568–4572. [Google Scholar] [CrossRef]
- Xie, H.; Lee, H.; Youn, W.; Choi, M. Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. J. Appl. Phys. 2003, 94, 4967–4971. [Google Scholar] [CrossRef]
- Eastman, J.A.; Phillpot, S.; Choi, S.; Keblinski, P. Thermal transport in nanofluids 1. Annu. Rev. Mater. Res. 2004, 34, 219–246. [Google Scholar] [CrossRef]
- Buongiorno, J.; Venerus, D.C.; Prabhat, N.; McKrell, T.; Townsend, J.; Christianson, R.; Tolmachev, Y.V.; Keblinski, P.; Hu, L.; Alvarado, J.L. A benchmark study on the thermal conductivity of nanofluids. J. Appl. Phys. 2009, 106, 094312–094314. [Google Scholar] [CrossRef] [Green Version]
- Pak, B.C.; Cho, Y.I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Trans. 1998, 11, 151–170. [Google Scholar] [CrossRef]
- Maïga, S.E.B.; Palm, S.J.; Nguyen, C.T.; Roy, G.; Galanis, N. Heat transfer enhancement by using nanofluids in forced convection flows. Inter. J. Heat Fluid Flow 2005, 26, 530–546. [Google Scholar] [CrossRef]
- Anoop, K.; Sundararajan, T.; Das, S.K. Effect of particle size on the convective heat transfer in nanofluid in the developing region. Inter. J. Heat Mass Transfer 2009, 52, 2189–2195. [Google Scholar] [CrossRef]
- Bergman, T. Effect of reduced specific heats of nanofluids on single phase, laminar internal forced convection. Int. J. Heat Mass Transfer 2009, 52, 1240–1244. [Google Scholar] [CrossRef]
- Paoletti, S.; Rispoli, F.; Sciubba, E. Calculation of exergetic losses in compact heat exchanger passage. ASME AES 1989, 21–29. [Google Scholar]
- Haddad, O.; Abuzaid, M.; Al-Nimr, M. Entropy generation due to laminar incompressible forced convection flow through parallel-plates microchannel. Entropy 2004, 6, 413–426. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hassan, M.; Sadri, R.; Ahmadi, G.; Dahari, M.B.; Kazi, S.N.; Safaei, M.R.; Sadeghinezhad, E. Numerical Study of Entropy Generation in a Flowing Nanofluid Used in Micro- and Minichannels. Entropy 2013, 15, 144-155. https://doi.org/10.3390/e15010144
Hassan M, Sadri R, Ahmadi G, Dahari MB, Kazi SN, Safaei MR, Sadeghinezhad E. Numerical Study of Entropy Generation in a Flowing Nanofluid Used in Micro- and Minichannels. Entropy. 2013; 15(1):144-155. https://doi.org/10.3390/e15010144
Chicago/Turabian StyleHassan, Mohammadreza, Rad Sadri, Goodarz Ahmadi, Mahidzal B. Dahari, Salim N. Kazi, Mohammad R. Safaei, and Emad Sadeghinezhad. 2013. "Numerical Study of Entropy Generation in a Flowing Nanofluid Used in Micro- and Minichannels" Entropy 15, no. 1: 144-155. https://doi.org/10.3390/e15010144
APA StyleHassan, M., Sadri, R., Ahmadi, G., Dahari, M. B., Kazi, S. N., Safaei, M. R., & Sadeghinezhad, E. (2013). Numerical Study of Entropy Generation in a Flowing Nanofluid Used in Micro- and Minichannels. Entropy, 15(1), 144-155. https://doi.org/10.3390/e15010144