Entropic Forms and Related Algebras
Abstract
:1. Introduction
2. Preliminary
3. Generalized Algebras
4. Examples
4.1. Stretched-Exponential Distribution
4.2. Power-Law Like Distributions
q-Distribution
Student’s t-Distribution
Cauchy–Lorentz distribution
Zipf–Pareto Distribution
4.3. Interpolating Fermi–Dirac and Bose–Einstein Distribution
5. Applications
5.1. Gauss Law of Error
5.2. Extensivity of Microcanonical Entropy
6. Conclusions
A. Proof of Theorem 1
B. Proof of Theorem 2
C. Proof of Theorem 3
References
- Kaniadakis, G.; Scarfone, A.M.; Seno, F. New trends in modern statistical physics. Cent. Eur. J. Phys. 2012, 10, 539. [Google Scholar] [CrossRef]
- Kaniadakis, G.; Scarfone, A.M. Adavnces in modern condensed matter physics. Int. J. Mod. Phys. B 2012, 26, 1202001–1. [Google Scholar] [CrossRef]
- Kaniadakis, G.; Scarfone, A.M. Advances in modern statistical mechanics. Mod. Phys. Lett. B 2012, 26, 1202001–1. [Google Scholar] [CrossRef]
- Caldarelli, G.; Kaniadakis, G.; Scarfone, A.M. Progress in the physics of complex networks. Eur. J. Phys. Spec. Top. 2012, 212, 1–3. [Google Scholar] [CrossRef]
- Tsallis, C.; Carbone, A.; Kaniadakis, G.; Scarfone, A.M.; Malartz, K. Advances in statistical physics. Centr. Eur. J. Phys. 2009, 7, 385–386. [Google Scholar] [CrossRef]
- Abe, S.; Herrmann, H.; Quarati, P.; Rapisarda, A.; Tsallis, C. Complexity, metastability and nonextensivity. AIP Conf. Proc. 2007, 965, 9. [Google Scholar]
- Laherrère, J.; Sornette, D. Stretched exponential distributions in nature and economy: “Fat tails” with characteristic scales. Eur. Phys. J. B 1998, 2, 525–539. [Google Scholar] [CrossRef]
- Clauset, A.; Shalizi, C.R.; Newman, M.E.J. Power-law distributions in empirical data, SIAM review. 2009, 51, 661–703. [Google Scholar]
- Zaslavsky, G.M. Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 2002, 371, 461–580. [Google Scholar] [CrossRef]
- Albert, R.; Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47–97. [Google Scholar] [CrossRef]
- Carbone, A.; Kaniadakis, G.; Scarfone, A.M. Where do we stand on econophysics? Physica A 2007, 382, 11–14. [Google Scholar] [CrossRef]
- Carbone, A.; Kaniadakis, G.; Scarfone, A.M. Tails and Ties. Eur. Phys. J. B 2007, 57, 121–125. [Google Scholar] [CrossRef]
- Sornette, D. Discrete-scale invariance and complex dimensions. Phys. Rep. 1998, 297, 239–270. [Google Scholar] [CrossRef]
- Blossey, R. Computational Biology—A Statistical Mechanics Prospective; Chapman & Hall Press: London, UK, 2006. [Google Scholar]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics; Springer: New York, NY, USA, 2009. [Google Scholar]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Abe, S. A note on the q-deformation-theoretic aspect of the generalized entropies in nonextensive physics. Phys. Lett. A 1997, 224, 326–330. [Google Scholar] [CrossRef]
- Kaniadakis, G. Statistical mechanics in the context of special relativity. Phys. Rev. E 2002, 66, 056125. [Google Scholar] [CrossRef] [PubMed]
- Kaniadakis, G.; Lissia, M.; Scarfone, A.M. Two-parameter deformations of logarithm, exponential, and entropy: A consistent framework for generalized statistical mechanics. Phys. Rev. E 2005, 71, 046128. [Google Scholar] [CrossRef] [PubMed]
- Scarfone, A.M.; Wada, T. Thermodynamic equilibrium and its stability for microcanonical systems described by the Sharma-Taneja-Mittal entropy. Phys. Rev. E 2005, 72, 026123. [Google Scholar] [CrossRef] [PubMed]
- Anteneodo, C.; Plastino, A.R. Maximum entropy approach to stretched exponential probability distributions. J. Phys. A: Math. Gen. 1999, 32, 1089–1097. [Google Scholar] [CrossRef]
- Kaniadakis, G.; Scarfone, A.M. A new one-parameter deformation of the exponential function. Physica A 2002, 305, 69–75. [Google Scholar] [CrossRef]
- Nivanen, L.; Le Mehaute, A.; Wang, Q.A. Generalized algebra within a nonextensive statistics. Rep. Math. Phys. 2003, 52, 437–444. [Google Scholar] [CrossRef]
- Borges, E.P. A possible deformed algebra and calculus inspired in nonextensive thermostatistics. Phisica A 2004, 340, 95–101. [Google Scholar] [CrossRef]
- Cardoso, P.G.S.; Borges, E.P.; Lobão, T.C.P.; Pinho, S.T.R. Nondistributive algebraic structures derived from nonextensive statistical mechanics. J. Math. Phys. 2008, 49, 093509. [Google Scholar] [CrossRef]
- Lobão, T.C.P.; Cardoso, P.G.S.; Pinho, S.T.R.; Borges, E.P. Some properties of deformed q-numbers. Braz. J. Phys. 2009, 39, 402–407. [Google Scholar] [CrossRef]
- El Kaabouchi, A.; Nivanen, L.; Wang, Q.A.; Badiali, J.P.; Le Méhauté, A. A mathematical structure for the generalization of conventional algebra. Centr. Eur. J. Phys. 2009, 7, 549–554. [Google Scholar] [CrossRef]
- Lenzi, E.K.; Borges, E.P.; Mendes, R.S. A q-generalization of Laplace transforms. J. Phys. A: Math. Gen. 1999, 32, 8551–8561. [Google Scholar] [CrossRef]
- Umarov, S.; Tsallis, C. On a representation of the inverse Fq-transform. Phys. Lett. A 2008, 372, 4874–4876. [Google Scholar] [CrossRef]
- Jauregui, M.; Tsallis, C. q-Generalization of the inverse Fourier transform. Phys. Lett. A 2011, 375, 2085–2088. [Google Scholar] [CrossRef]
- Jauregui, M.; Tsallis, C. New representations of and Dirac delta using the nonextensive-statistical-mechanics q-exponential function. J. Math. Phys. 2010, 51, 063304. [Google Scholar] [CrossRef]
- Umarov, S.; Tsallis, C.; Steinberg, S. On a q-central limit theorem consistent with nonextensive statistical mechanics. Milan J. Math. 2008, 76, 307–328. [Google Scholar] [CrossRef]
- Umarov, S.; Duarte Queirós, S.M. Functional differential equations for the q-Fourier transform of q-Gaussians. J. Phys. A 2010, 43, 095202. [Google Scholar] [CrossRef]
- Niven, R.K.; Suyari, H. The q-gamma and (q,q)-polygamma functions of Tsallis statistics. Physica A 2009, 388, 4045–4060. [Google Scholar] [CrossRef]
- Niven, R.K.; Suyari, H. Combinatorial basis and non-asymptotic form of the Tsallis entropy function. Eur. Phys. J. B 2008, 61, 75–82. [Google Scholar] [CrossRef]
- Suyari, H.; Wada, T. Multiplicative duality, q-triplet and (μ,ν,q)-relation derived from the one-to-one correspondence between the (μ,ν)-multinomial coefficient and Tsallis entropy Sq. Physica A 2008, 387, 71–83. [Google Scholar] [CrossRef]
- Suyari, H. Mathematical structures derived from the q-multinomial coefficient in Tsallis statistics. Physica A 2006, 368, 63–82. [Google Scholar] [CrossRef]
- Oikonomou, Th. Tsallis, Renyi and nonextensive Gaussian entropy derived from the respective multinomial coefficients. Physica A 2007, 386, 119–134. [Google Scholar] [CrossRef]
- Scarfone, A.M.; Suyari, H.; Wada, T. Gauss’ law of error revisited in the framework of Sharma-Taneja-Mittal information measure. Centr. Eur. J. Phys. 2009, 7, 414–420. [Google Scholar] [CrossRef]
- Wada, T.; Suyari, H. kappa-generalization of Gauss’ law of error. Phys. Lett. A 2006, 348, 89–93. [Google Scholar] [CrossRef]
- Suyari, H.; Tsukada, M. Law of error in Tsallis statistics. IEEE Trans. Inf. Th. 2005, 51, 753–757. [Google Scholar] [CrossRef]
- Lavagno, A.; Scarfone, A.M.; Swamy, P.N. Basic-deformed thermostatistics. J. Phys. A: Math. Theor. 2007, 40, 8635–8654. [Google Scholar] [CrossRef]
- Olemskoi, A.I.; Borysov, S.S.; Shuda, I.A. Statistical field theories deformed within different calculi. Eur. Phys. J. B 2010, 77, 219–231. [Google Scholar] [CrossRef]
- Hanel, R.; Thurner, S. Generalized Boltzmann factors and the maximum entropy principle: Entropies for complex systems. Physica A 2007, 380, 109–114. [Google Scholar] [CrossRef]
- Hanel, R.; Thurner, S. When do generalized entropies apply? How phase space volume determines entropy. Eur. Phys. Lett. 2011, 96, 50003. [Google Scholar] [CrossRef]
- Tsallis, C. Occupancy of phase space, extensivity of S(q), and q-generalized central limit theorem. Physica A 2006, 365, 7–16. [Google Scholar] [CrossRef]
- Tsallis, C. Is the entropy Sq extensive or nonextensive? Astrophys. Space Sci. 2006, 305, 261–271. [Google Scholar] [CrossRef]
- Tsallis, C. Some open points in nonextensive statistical mechanics. Int. J. Bif. Chaos 2012, 22, 1230030. [Google Scholar] [CrossRef]
- Abe, S. Generalized entropy optimized by a given arbitrary distribution. J. Phys. A: Math. Gen. 2003, 36, 8733–8738. [Google Scholar] [CrossRef]
- Abe, S.; Kaniadakis, G.; Scarfone, A.M. Stabilities of generalized entropies. J. Phys. A: Math. Gen. 2004, 37, 10513–10519. [Google Scholar] [CrossRef]
- Hanel, R.; Thurner, S. A comprehensive classification of complex statistical systems and an axiomatic derivation of their entropy and distribution functions. Eur. Phys. Lett. 2011, 93, 20006. [Google Scholar] [CrossRef]
- Thurner, S.; Hanel, R. Generalized-generalized entropies and limit distributions. 2009, 39, 413–416. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series and Products; Academic Press: San Diego, USA, 2000. [Google Scholar]
- Sharma, B.D.; Taneja, I.J. Entropy of type (α,β) and other generalized additive measures in information theory. Metrika 1975, 22, 205–215. [Google Scholar] [CrossRef]
- Sharma, B.D.; Mittal, D.P. New nonadditive measures of inaccuracy. J. Math. Sci. 1975, 10, 122–133. [Google Scholar]
- Mittal, D.P. On some functional equations concerning entropy, directed divergence and inaccuracy. Metrika 1975, 22, 35–46. [Google Scholar] [CrossRef]
- Wada, T.; Scarfone, A.M. Connections between Tsallis’ formalisms employing the standard linear average energy and ones employing the normalized q-average energy. Phys. Lett. A 2005, 335, 351–362. [Google Scholar] [CrossRef]
- Kaniadakis, G.; Lavagno, A.; Quarati, P. Kinetic approach to fractional exclusion statistics. Nucl. Phys. B 1996, 466, 527–537. [Google Scholar] [CrossRef]
- Feller, W. An Introduction to Probability Theory and Its Applications; John Wiley & Sons, Inc.: New York, NY, USA, 1966. [Google Scholar]
- Kaniadakis, G. Statistical mechanics in the context of special relativity. II. Phys. Rev. E 2005, 72, 036108. [Google Scholar] [CrossRef] [PubMed]
- Kalogeropoulos, N. Distributivity and deformation of the reals from Tsallis entropy. Physica A 2012, 391, 1120–1127. [Google Scholar] [CrossRef]
- Zhang, J.-Z.; Osland, P. Perturbative aspects of q-deformed dynamics. Eur. Phys. J. C 2001, 20, 393–396. [Google Scholar] [CrossRef]
- Kaniadakis, G.; Quarati, P.; Scarfone, A.M. Kinetical foundations of non-conventional statistics. Physica A 2002, 305, 76–83. [Google Scholar] [CrossRef]
- Wang, Q.A. Nonextensive statistics and incomplete information. Eur. Phys. J. B 2002, 26, 357–368. [Google Scholar] [CrossRef]
- Biró, T.S.; Kaniadakis, G. Two generalizations of the Boltzmann equation. Eur. J. Phys. B 2006, 50, 3–6. [Google Scholar] [CrossRef]
- Biró, T.S.; Purcsel, G. Equilibration of two power-law tailed distributions in a parton cascade model. Phys. Lett. A 2008, 372, 1174–1179. [Google Scholar] [CrossRef]
- Scarfone, A.M. Intensive variables in the framework of the non-extensive thermostatistics. Phys. Lett. A 2010, 374, 2701–2706. [Google Scholar] [CrossRef]
- Lenzi, E.K.; Scarfone, A.M. Extensive-like and intensive-like thermodynamical variables in generalized thermostatistics. Physica A 2012, 391, 2543–2555. [Google Scholar] [CrossRef]
- Kaniadakis, G. Maximum entropy principle and power-law tailed distributions. Eur. Phys. J. B 2009, 70, 3–13. [Google Scholar] [CrossRef]
- Kaniadakis, G. Relativistic entropy and related Boltzmann kinetics. Eur. Phys. J. A 2009, 40, 275–287. [Google Scholar] [CrossRef]
© 2013 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Scarfone, A.M. Entropic Forms and Related Algebras. Entropy 2013, 15, 624-649. https://doi.org/10.3390/e15020624
Scarfone AM. Entropic Forms and Related Algebras. Entropy. 2013; 15(2):624-649. https://doi.org/10.3390/e15020624
Chicago/Turabian StyleScarfone, Antonio Maria. 2013. "Entropic Forms and Related Algebras" Entropy 15, no. 2: 624-649. https://doi.org/10.3390/e15020624
APA StyleScarfone, A. M. (2013). Entropic Forms and Related Algebras. Entropy, 15(2), 624-649. https://doi.org/10.3390/e15020624