Implication of Negative Entropy Flow for Local Rainfall
Abstract
:1. Introduction
2. Entropy Balance Equation
3. Results
3.1. Extratropical Cyclone
3.2. Tropical Storm
4. Discussion and Conclusions
Acknowledgements
Conflicts of Interest
References
- Prigogine, I. Thermodynamics of irreversible processes. Bull. Class. Sci. Acad. Roy. Belg. 1945, 31, 600–621. [Google Scholar]
- Prigogine, I. Introduction to Thermodynamics of Irreversible Processes; Charles, C., Ed.; Thomas: Springfield, IL, USA, 1955; pp. 9–31. [Google Scholar]
- Ruelle, D.P. Extending the definition of entropy to nonequilibrium steady states. Proc. Natl. Acad. Sci. 2003, 100, 3054–3058. [Google Scholar] [CrossRef] [PubMed]
- De Groot, S.R.; Mazur, P. Non-Equilibrium Thermodynamics; North-Holland Publishing Company: Amsterdam, The Netherlands, 1962; pp. 410–425. [Google Scholar]
- Glansdorff, P.; Prigogine, I. Thermodynamic Theory of Structure, Stability and Fluctuations; Wiley Interscience: New York, NY, USA, 1971; pp. 16–19. [Google Scholar]
- Eckert, K.; Bestehorn, M.; Thess, A. Square cells in surface-tension-driven Bénard convection: Experiment and theory. J. Fluid Mech. 1998, 356, 155–197. [Google Scholar] [CrossRef]
- Grinstein, G.; Linsker, R. Comments on a derivation and application of the “maximum entropy production” principle. J. Phys. A: Math. Theor. 2007, 40, 9717–9720. [Google Scholar] [CrossRef]
- Schrödinger, E. What Is Life? (first published in 1944); Cambridge University Press: Cambridge, UK, 1992; pp. 19–25. [Google Scholar]
- Olby, R. Schrödinger’s problem: What is life? J. Hist. Biol. 1971, 4, 119–148. [Google Scholar] [CrossRef] [PubMed]
- Katchalsky, A.; Curran, P.F. Non-Equilibrium Thermodynamics in Biophysics; Harvard University Press: Cambridge, MA, USA, 1965. [Google Scholar]
- Beretta, G.P. Modeling non-equilibrium dynamics of a discrete probability distribution: General rate equation for maximal entropy generation in a maximum-entropy landscape with time-dependent constraints. Entropy 2008, 10, 160–182. [Google Scholar] [CrossRef]
- Fraedrich, K.; Blender, R. Scaling of atmosphere and ocean temperature correlations in observations and climate models. Phys. Rev. Lett. 2003, 90, 1–4. [Google Scholar] [CrossRef]
- Tsonis, A.A. Introduction to Atmospheric Thermodynamics; Cambridge University Press: Cambridge, UK, 2002; pp. 69–72. [Google Scholar]
- Liu, C.; Liu, Y. An attempt at improving a global spectral model by incorporating the second law of thermodynamics. Geophys. Res. Lett. 2005. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y.; Kang, H. A new technique of physical dissipation and its application to a meso-scale numerical weather prediction model. Sci. China Ser. D 2002, 45, 769–780. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y.; Xu, H. A physics-based diffusion scheme for numerical models. Geophys. Res. Lett. 2006, L12805. [Google Scholar] [CrossRef]
- Onsager, L. Reciprocal relations in irreversible processes. I. Phys. Rev. 1931, 37, 405–426. [Google Scholar] [CrossRef]
- Mason, B.J. Physics of Clouds; Oxford University Press: London, UK, 1971; pp. 119–123. [Google Scholar]
- Liu, Y.; Zhang, D.-L.; Yau, M.K. A multiscale numerical study of Hurricane Andrew (1992), Part I: Explicit simulation and verification. Mon. Wea. Rev. 1997, 125, 3073–3093. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, C. On the entropy flow properties of a severe tropical storm. Appl. Phys. Lett. 2007, 91, 014103. [Google Scholar] [CrossRef]
- Xu, H.; Liu, C. Entropy properties of a typhoon as simulated by a meso-scale model. Europhys. Lett. 2008, 83, 18001. [Google Scholar] [CrossRef]
- Liu, C.; Luo, Z.; Liu, Y.; Yu, H.; Zhou, X.; Wang, D.; Ma, L.; Xu, H. Implication of entropy flow for the development of a system as suggested by the life cycle of a hurricane. Mod. Phys. Lett. B 2010, 24, 1747–1757. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. B. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Liu, Y.; Liu, C.; Li, Z. Implication of Negative Entropy Flow for Local Rainfall. Entropy 2013, 15, 3449-3457. https://doi.org/10.3390/e15093449
Liu Y, Liu C, Li Z. Implication of Negative Entropy Flow for Local Rainfall. Entropy. 2013; 15(9):3449-3457. https://doi.org/10.3390/e15093449
Chicago/Turabian StyleLiu, Ying, Chongjian Liu, and Zhaohui Li. 2013. "Implication of Negative Entropy Flow for Local Rainfall" Entropy 15, no. 9: 3449-3457. https://doi.org/10.3390/e15093449
APA StyleLiu, Y., Liu, C., & Li, Z. (2013). Implication of Negative Entropy Flow for Local Rainfall. Entropy, 15(9), 3449-3457. https://doi.org/10.3390/e15093449