Extreme Value Laws for Superstatistics
Abstract
:1. Introduction
2. Extreme Value Theory for Stationary Processes
2.1. The Independent Identically Distributed Case
- Type I : G(x) = exp (−e−x) for x ∈ ℝ. This distribution is known as the Gumbel extreme value distribution (e.v.d.).
- Type II : G(x) = exp (−x−α), for x > 0, G(x) = 0, otherwise; where α > 0 is a parameter. This family of distributions is known as the Fréchet e.v.d.
- Type III: G(x) = exp (−(−x)α), for x ≤ 0; G(x) = 1, otherwise; where α > 0 is a parameter. This family is known as the Weibull e.v.d.
- Type I: There exists some strictly positive function h(t) such that for all real x;
- Type II: xM = +∞ and , with α > 0, for each x > 0;
- Type III: xM < ∞ and , with α > 0, for each x > 0.
2.2. The Stationary Case
3. The Superstatistical Model
3.1. The Model
3.2. High-Energy Asymptotics
3.2.1. Power-Law Tail
3.2.2. Exponential Tail
3.2.3. Log-Normal Distribution
4. Extreme Values for Superstatistical Distributions
4.1. Power-Law Tail
4.2. Exponential Tail
4.3. Log-Normal Distribution
5. Conclusions and Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Beck, C.; Cohen, E.G.D. Superstatistics. Physica A 2003. [Google Scholar]
- Beck, C.; Cohen, E.G.; Swinney, H.L. From time series to superstatistics. Phys. Rev. E 2005, 72, 056133. [Google Scholar]
- Touchette, H.; Beck, C. Asymptotics of superstatistics. Phys. Rev. E 2005, 71, 016131. [Google Scholar]
- Jizba, P.; Kleinert, H. Superpositions of probability distributions. Phys. Rev. E 2008, 78, 031122. [Google Scholar]
- Chavanis, P.H. Quasi-stationary states and incomplete violent relaxation in systems with long-range interactions. Physica A 2006, 365, 102–107. [Google Scholar]
- Frank, S.A.; Smith, D.E. Measurement invariance, entropy, and probability. Entropy 2010, 12, 289–303. [Google Scholar]
- Anteneodo, C.; Duarte Queiros, S.M. Statistical mixing and aggregation in Feller diffusion. J. Stat. Mech 2009, 10, P10023. [Google Scholar]
- Van der Straeten, E.; Beck, C. Superstatistical fluctuations in time series: Applications to share-price dynamics and turbulence. Phys. Rev. E 2009, 80, 036108. [Google Scholar]
- Mark, C.; Metzner, C.; Fabry, B. Bayesian inference of time varying parameters in autoregressive processes; 2014; arXiv:1405.1668. [Google Scholar]
- Hanel, R.; Thurner, S.; Gell-Mann, M. Generalized entropies and the transformation group of superstatistics. Proc. Natl. Acad. Sci. USA 2011, 108, 6390–6394. [Google Scholar]
- Guo, J.L.; Suo, Q. Upper Entropy Axioms and Lower Entropy Axioms for Superstatistics 2014. arXiv:1406.4124.
- Tsallis, C.; Souza, A.M.C. Constructing a statistical mechanics for Beck-Cohen superstatistics. Phys. Rev. E 2003, 67, 026106. [Google Scholar]
- Reynolds, A.M. Superstatistical mechanics of tracer-particle motions in turbulence. Phys. Rev. Lett 2003, 91, 084503. [Google Scholar]
- Beck, C. Statistics of three-dimensional Lagrangian turbulence. Phys. Rev. Lett 2007, 98, 064502. [Google Scholar]
- Beck, C. Dynamical foundations of nonextensive statistical mechanics. Phys. Rev. Lett 87, 01.
- Beck, C.; Miah, S. Statistics of Lagrangian quantum turbulence. Phys. Rev. E 2013, 87, 031002. [Google Scholar]
- Jizba, P.; Scardigli, F. Special relativity induced by granular space. Eur. Phys. J. C 2013, 73. [Google Scholar] [CrossRef]
- Rizzo, S.; Rapisarda, A. Environmental atmospheric turbulence at Florence airport; 2004; arXiv:cond-mat/0406684. [Google Scholar]
- Rabassa, P.; Beck, C. Superstatistical analysis of sea-level fluctuations. Physica A 2015, 417, 18–28. [Google Scholar]
- Itto, Y. Heterogeneous anomalous diffusion in view of superstatistics. Phys. Lett. A 2014, 378, 3037–3040. [Google Scholar]
- Briggs, K.; Beck, C. Modelling train delays with q-exponential functions. Physica A 2007, 378, 498–504. [Google Scholar]
- Chen, L.L.; Beck, C. A superstatistical model of metastasis and cancer survival. Physica A 2008, 387, 3162–3172. [Google Scholar]
- Abul-Magd, A.Y.; Akemann, G.; Vivo, P. Superstatistical generalizations of Wishart–Laguerre ensembles of random matrices. J. Phys. A Math. Theor 2009, 42, 175207. [Google Scholar]
- Beck, C. Generalized statistical mechanics of cosmic rays. Physica A 2004, 331, 173–181. [Google Scholar]
- Sobyanin, D.N. Hierarchical maximum entropy principle for generalized superstatistical systems and Bose-Einstein condensation of light. Phys. Rev. E 2012, 85, 061120. [Google Scholar]
- Daniels, K.E.; Beck, C.; Bodenschatz, E. Defect turbulence and generalized statistical mechanics. Physica D 2004, 193, 208–217. [Google Scholar]
- Yalcin, G.C.; Beck, C. Environmental superstatistics. Physica A 2013, 392, 5431–5452. [Google Scholar]
- Tsallis, C. Possible generalization of Boltzmann–Gibbs statistics. J Stat. Phys 1988, 52, 479–487. [Google Scholar]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics; Springer: New York, NY, USA, 2009. [Google Scholar]
- Santhanam, M.S.; Kantz, H. Return interval distribution of extreme events and long-term memory. Phys. Rev. E 2008, 78, 051113. [Google Scholar]
- Haigh, I.; Nicholls, R.; Wells, N. Mean sea level trends around the English Channel over the 20th century and their wider context. Cont. Shelf Res 2009, 29, 2083–2098. [Google Scholar]
- Leadbetter, M.R.; Lindgren, G.; Rootzén, H. Extremes and Related Properties of Random Sequences and Processes; Mir publishers: Moscow, Russia, 1989. (In Russian) [Google Scholar]
- Embrechts, P.; Klüpperberg, C.; Mikosch, T. Modelling Extremal Events: For Insurance and Finance; Springer: Heidelberg/Berlin, Germany, 1997. [Google Scholar]
- Coles, S. An Introduction to Statistical Modeling of Extreme Values; Springer: London, UK, 2001. [Google Scholar]
- De Haan, L.; Ferreira, A. Extreme Value Theory: An Introduction; Springer: New York, NY, USA, 2006. [Google Scholar]
- Lucarini, V.; Faranda, D.; Turchetti, G.; Vaienti, S. Extreme value theory for singular measures. Chaos 2012, 22, 023135. [Google Scholar]
- Faranda, D.; Lucarini, V.; Turchetti, G.; Vaienti, S. Numerical convergence of the block-maxima approach to the Generalized Extreme Value distribution. J. Stat. Phys 2011, 145, 1156–1180. [Google Scholar]
- Freitas, A.C.M.; Freitas, J.M. On the link between dependence and independence in extreme value theory for dynamical systems. Stat. Probabil. Lett 2008, 78, 1088–1093. [Google Scholar]
- Freitas, A.C.M.; Freitas, J.M.; Todd, M. Extreme value laws in dynamical systems for non-smooth observations. J. Stat. Phys 2011, 142, 108–126. [Google Scholar]
- Freitas, A.C.M.; Freitas, J.M.; Todd, M. The extremal index, hitting time statistics and periodicity. Adv. Math 2012, 231, 2626–2665. [Google Scholar]
- Holland, M.; Nicol, M.; Török, A. Extreme value theory for non-uniformly expanding dynamical systems. Trans. Am. Math. Soc 2012, 364, 661–688. [Google Scholar]
- Holland, M.P.; Vitolo, R.; Rabassa, P.; Sterk, A.E.; Broer, H.W. Extreme value laws in dynamical systems under physical observables. Physica D 2012, 241, 497–513. [Google Scholar]
- Gupta, C.; Holland, M.; Nicol, M. Extreme value theory and return time statistics for dispersing billiard maps and flows, Lozi maps and Lorenz-like maps. Ergod. Theor. Dyn. Syst 2011, 31, 1363–1390. [Google Scholar]
- Keller, G. Rare events, exponential hitting times and extremal indices via spectral perturbation. Dyn. Syst 2012, 27, 11–27. [Google Scholar]
- Aytaç, H.; Freitas, J.M.; Vaienti, S. Laws of rare events for deterministic and random dynamical systems; 2013; arXiv:1207.5188. [Google Scholar]
- Faranda, D.; Freitas, J.M.; Lucarini, V.; Turchetti, G.; Vaienti, S. Extreme value statistics for dynamical systems with noise. Nonlinearity 2013, 26. [Google Scholar] [CrossRef]
- Faranda, D.; Vaienti, S. Extreme Value laws for dynamical systems under observational noise. Physica D 2014, 280, 86–94. [Google Scholar]
- Fisher, R.A.; Tippett, L.H.C. Limiting forms of the frequency distribution of the largest or smallest member of a sample. Math. Proc. Cambridge Philos. Soc 1928, 24, 180–190. [Google Scholar]
- Gnedenko, B. Sur la distribution limite du terme maximum d’une serie aleatoire. Ann. Math 1943, 44, 423–453. [Google Scholar]
- Leadbetter, M.R. On extreme values in stationary sequences. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 1974, 28, 289–303. (In German) [Google Scholar]
- Kaniadakis, G.; Lissia, M.; Scarfone, A.M. Two-parameter deformations of logarithm, exponential, and entropy: A consistent framework for generalized statistical mechanics. Phys. Rev. E 2005, 71, 046128. [Google Scholar]
- Holgate, P. The lognormal characteristic function. Commun. Stat. Theor. Meth 1989, 18, 4539–4548. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Rabassa, P.; Beck, C. Extreme Value Laws for Superstatistics. Entropy 2014, 16, 5523-5536. https://doi.org/10.3390/e16105523
Rabassa P, Beck C. Extreme Value Laws for Superstatistics. Entropy. 2014; 16(10):5523-5536. https://doi.org/10.3390/e16105523
Chicago/Turabian StyleRabassa, Pau, and Christian Beck. 2014. "Extreme Value Laws for Superstatistics" Entropy 16, no. 10: 5523-5536. https://doi.org/10.3390/e16105523
APA StyleRabassa, P., & Beck, C. (2014). Extreme Value Laws for Superstatistics. Entropy, 16(10), 5523-5536. https://doi.org/10.3390/e16105523