A Maximum Entropy Fixed-Point Route Choice Model for Route Correlation
Abstract
:1. Introduction
2. Literature Review
2.1. Multinomial Logit for Route Choice
2.2. C-Logit Model
2.3. Path-Size Logit Model
2.4. Paired Combinatorial Logit Model
- yk characterizes each alternative (in our case, a route between an O-D pair),
- σkj is a similarity index between alternatives k, and
- n is the number of alternatives.
2.5. Cross-Nested Logit Model
- m characterizes the links and therefore the nests,
- is the set of links that belongs to route p in the O-D pair w,
- are parameters that represent the degree of inclusion of alternative p in nest m, and
- µ is the nesting coefficient. If µ = 1, the model reduces to a MNL model.
4. Numerical Results and Extensions
4.1. Application to a Medium-Sized Network: The Santiago Metro
- (a)
- Multinomial logit (MNL). This is the base model because it does not account for correlations and is also used to construct the route choice proxy variables.
- (b)
- C-logit.
- (c)
- Path-size logit (PSL).
- (d)
- PCL.
- (e)
- CNL.
- (f)
- Fixed-point model (FPM) with spatial correlations, which is our proposed model.
- percent of correct predictions (PCP);
- residual sum of squares (RSS): , where Yi is 1 if an alternative i is chosen and 0 otherwise and Pi is the probability predicted by the model of choosing alternative I; and
- weighted residual sum of squares (WRSS): .
4.2. Extension of Proposed Fixed-Point Model to Traffic Assignment with Route Correlation
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wardrop, J.G. Some theoretical aspects of road traffic research. In ICE Proceedings: Engineering Divisions; Thomas Telford: London, UK, 1952; pp. 325–362. [Google Scholar]
- Beckmann, M.; McGuire, C.; Winsten, C.B. Studies in the Economics of Transportation; Yale University Press: New Haven, CT, USA, 1956. [Google Scholar]
- Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math 1959, 1, 269–271. [Google Scholar]
- De Cea, J.; Fernández, E. Transit assignment for congested public transport systems: An equilibrium model. Transp. Sci 1993, 27, 133–147. [Google Scholar]
- De Grange, L.; Muñoz, J.C. An equivalent optimization formulation for the traffic assignment problem with asymmetric linear costs. Transp. Plan. Tech 2009, 32, 1–25. [Google Scholar]
- Dafermos, S.C.; Sparrow, F.T. Traffic assignment problem for a general network. J. Res. Natl. Bur. Stand. Sect. B-Math. Sci 1969, 73, 91–117. [Google Scholar]
- Florian, M.A. (Ed.) Traffic Equilibrium Methods; Lecture Notes in Economics and Mathematical Systems; Springer-Verlag: Berlin, Germany, 1976; Volume 188.
- Florian, M. A traffic equilibrium model of travel by car and public transit modes. Trans. Sci 1977, 11, 166–179. [Google Scholar]
- Dafermos, S. Traffic equilibrium and variational inequalities. Transp. Sci 1980, 14, 42–54. [Google Scholar]
- Patriksson, M. Nonlinear Programming and Variational Inequality Problems: A Unified Approach; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998; Volume 23. [Google Scholar]
- Florian, M.; Hearn, D. Traffic assignment: Equilibrium models. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng 2001, 215, 305–315. [Google Scholar]
- Boyce, D.E.; Mahmassani, H.S.; Nagurney, A. A retrospective on beckmann, mcguire and winsten's studies in the economics of transportation. Pap. Reg. Sci 2005, 84, 85–103. [Google Scholar]
- Daganzo, C.F.; Sheffi, Y. On stochastic models of traffic assignment. Transp. Sci 1977, 11, 253–274. [Google Scholar]
- Hazelton, M.L. Some remarks on stochastic user equilibrium. Transp. Res. Part B Methodol 1998, 32, 101–108. [Google Scholar]
- Ramming, M.S. Network Knowledge and Route Choice; Massachusetts Institute of Technology: Cambridge, MA, USA, 2001. [Google Scholar]
- Prashker, J.N.; Bekhor, S. Route choice models used in the stochastic user equilibrium problem: A review. Transp. Rev 2004, 24, 437–463. [Google Scholar]
- Cascetta, E.; Nuzzolo, A.; Russo, F.; Vitetta, A. . A Modified Logit Route Choice Model Overcoming Path Overlapping Problems: Specification and Some Calibration Results for Interurban Networks. Proceedings of the 13th International Symposium on Transportation and Traffic Theory, Lyon, France, 24–26 July 1996; Pergamon: Oxford, NY, USA, 1996; pp. 697–711. [Google Scholar]
- Ben-Akiva, M.; Bierlaire, M. Discrete choice methods and their applications to short term travel decisions. In Handbook of Transportation Science; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; pp. 5–34. [Google Scholar]
- Bekhor, S.; Prashker, J.N. Formulations of Extended Logit Stochastic User Equilibrium Assignments. Proceedings of the 14th International Symposium on Transportation and Traffic Theory, Jerusalem, Israel, 20–23 July 1999.
- Bekhor, S.; Prashker, J.N. Stochastic user equilibrium formulation for generalized nested logit model. Transp. Res. Rec. J. Transp. Res. Board 2001, 1752, 84–90. [Google Scholar]
- Bovy, P.H.; Bekhor, S.; Prato, C.G. The factor of revisited path size: Alternative derivation. Transp. Res. Rec. J. Transp. Res. Board 2008, 2076, 132–140. [Google Scholar]
- Prato, C.G. Route choice modeling: Past, present and future research directions. J. Choice Model 2009, 2, 65–100. [Google Scholar]
- Dial, R.B. A probabilistic multipath traffic assignment model which obviates path enumeration. Transp. Res 1971, 5, 83–111. [Google Scholar]
- Bell, M.G. Alternatives to dial’s logit assignment algorithm. Transp. Res. Part B: Methodol 1995, 29, 287–295. [Google Scholar]
- Ben-Akiva, M.; Bergman, M.; Daly, A.J.; Ramaswamy, R. Modeling Inter-Urban Route Choice Behaviour. Proceedings of the 9th International Symposium on Transportation and Traffic Theory, Delft, The Netherlands, 11–13 July 1984; VNU Press: Utrecht, The Netherlands, 1984; pp. 299–330. [Google Scholar]
- Cascetta, E.; Papola, A.; Russo, F.; Vitetta, A. Implicit Availability/Perception Logit Models for Route Choice in Transportation Networks. Proceedings of the 8th World Conference on Transport Research, Antwerp, Belgium, 12–17 July 1998.
- Cascetta, E.; Russo, F.; Viola, F.; Vitetta, A. A Model of Route Perception in Urban Road Networks. Transp. Res. Part B: Methodol 2002, 36, 577–592. [Google Scholar]
- Ben-Akiva, M.; Bierlaire, M. Discrete choice models with applications to departure time and route choice. In Handbook of Transportation Science; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; pp. 7–37. [Google Scholar]
- Bovy, P.H.; Hoogendoorn-Lanser, S. Modelling route choice behaviour in multi-modal transport networks. Transportation 2005, 32, 341–368. [Google Scholar]
- Prato, C.G.; Bekhor, S. Modeling route choice behavior: How relevant is the composition of choice set? Transp. Res. Rec. J. Transp. Res. Board 2007, 2003, 64–73. [Google Scholar]
- Bekhor, S.; Ben-Akiva, M.E.; Ramming, M.S. Evaluation of choice set generation algorithms for route choice models. Ann. Oper. Res 2006, 144, 235–247. [Google Scholar]
- Bliemer, M.C.; Bovy, P.H. Impact of route choice set on route choice probabilities. Transp. Res. Rec. J. Transp. Res. Board 2008, 2076, 10–19. [Google Scholar]
- McFadden, D. Modelling the Choice of Residential Location. In Spatial Interaction Theory and Planning Models; Karlqvist, A., Lundqvist, L., Snickars, F., Weibull, J., Eds.; North-Holland: Amsterdam, The Netherlands, 1978; pp. 75–96. [Google Scholar]
- De Cea, J.; Fernandez, J.E.; de Grange, L. Combined models with hierarchical demand choices: A multi-objective entropy optimization approach. Transp. Rev 2008, 28, 415–438. [Google Scholar]
- Donoso, P.; de Grange, L.; González, F. A maximum entropy estimator for the aggregate hierarchical logit model. Entropy 2011, 13, 1425–1445. [Google Scholar]
- Ben-Akiva, M.; Ramming, S. Lecture notes: Discrete choice models of traveler behavior in networks. Proceedings of the Advanced Methods for Planning and Management of Transportation Networks, Capri, Italy, 25–29 May 1998; 25.
- Chen, A.; Kasikitwiwat, P.; Ji, Z. Solving the overlapping problem in route choice with paired combinatorial logit model. Transp. Res. Rec. J. Transp. Res. Board 2003, 1857, 65–73. [Google Scholar]
- Prashker, J.N.; Bekhor, S. Investigation of stochastic network loading procedures. Transp. Res. Rec. J. Transp. Res. Board 1998, 1645, 94–102. [Google Scholar]
- Vovsha, P.; Bekhor, S. Link-nested logit model of route choice: Overcoming route overlapping problem. Transp. Res. Rec. J. Transp. Res. Board 1998, 1645, 133–142. [Google Scholar]
- De Grange, L.; Fernández, E.; de Cea, J. A consolidated model of trip distribution. Transp. Res. Part E: Logist. Transp. Rev 2010, 46, 61–75. [Google Scholar]
- Yai, T.; Iwakura, S.; Morichi, S. Multinomial probit with structured covariance for route choice behavior. Transp. Res. Part B: Methodol 1997, 31, 195–207. [Google Scholar]
- Golan, A. Information and entropy econometrics—Editor’s view. J. Econ 2002, 107, 1–15. [Google Scholar]
- Marler, R.T.; Arora, J.S. Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim 2004, 26, 369–395. [Google Scholar]
- De Oliveira, J.A.; Papesso, E.R.; Leonel, E.D. Relaxation to fixed points in the logistic and cubic maps: Analytical and numerical investigation. Entropy 2013, 15, 4310–4318. [Google Scholar]
- Greene, W.H. Econometric Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 2011. [Google Scholar]
- Donoso, P.; de Grange, L. A microeconomic interpretation of the maximum entropy estimator of multinomial logit models and its equivalence to the maximum likelihood estimator. Entropy 2010, 12, 2077–2084. [Google Scholar]
- Gupta, M.; Srivastava, S. Parametric bayesian estimation of differential entropy and relative entropy. Entropy 2010, 12, 818–843. [Google Scholar]
- Raveau, S.; Muñoz, J.C.; de Grange, L. A topological route choice model for metro. Transp. Res. Part A: Policy Pract 2011, 45, 138–147. [Google Scholar]
- Brouwer, L.E.J. Über abbildung von mannigfaltigkeiten. Math. Ann 1911, 71, 97–115. (in German). [Google Scholar]
- Copas, J. Unweighted sum of squares test for proportions. J. R. Stat. Soc. Ser. C 1989, 38, 71–80. [Google Scholar]
- Wasserman, L. All of Nonparametric Statistics; Springer: New York, NY, USA, 2006. [Google Scholar]
- Fisk, C. Some developments in equilibrium traffic assignment. Transp. Res. Part B: Methodol 1980, 14, 243–255. [Google Scholar]
No. of Observed Alternative Routes | % of All O-D Pairs | % of All Trips |
---|---|---|
2 | 97% | 93% |
3 | 3% | 7% |
4 | <1% | <1% |
Variable | MNL | C-Logit | PSL | PCL | CNL | FPM | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | Test-t | Parameter | Test-t | Parameter | Test-t | Parameter | Test-t | Parameter | Test-t | Parameter | Test-t | |
Trip time | −0.124 | −38.1 | −0.126 | −37.8 | −0.125 | −37.5 | −0.102 | −35.2 | −0.407 | −11.9 | −0.097 | −29.2 |
Walk and waiting time | −0.192 | −7.6 | −0.212 | −8.0 | −0.203 | −7.7 | −0.190 | −9.6 | −0.518 | −7.5 | −0.136 | −5.5 |
No. of transfers | −0.853 | −13.4 | −0.811 | −12.3 | −0.828 | −12.6 | −0.588 | −11.4 | −2.031 | −8.9 | −0.610 | −9.4 |
Reasonable route | −0.445 | −11.1 | −0.458 | −11.3 | −0.454 | −11.2 | −0.268 | −8.2 | −0.968 | −8.1 | −0.239 | −5.7 |
Old route | 0.458 | 10.3 | 0.448 | 10.1 | 0.452 | 10.2 | 0.319 | 9.6 | 0.979 | 7.7 | 0.336 | 7.2 |
Spatial correlation | - | - | −0.351 | −2.4 | 0.222 | 1.5 | 0.571 | 19.2 | 0.306 | 12.4 | −1.980 | −17.9 |
Log-likelihood | −7225.35 | −7222.51 | −7224.31 | −7117.90 | −7060.65 | −7062.12 | ||||||
Adjusted rho squared | 0.375 | 0.375 | 0.375 | 0.384 | 0.390 | 0.389 | ||||||
Sample Size | 16,029 | 16,029 | 16,029 | 16,029 | 16,029 | 16,029 |
Indicator | MNL | C-Logit | PSL | PCL | CNL | FPM |
---|---|---|---|---|---|---|
PCP | 81.4% | 81.4% | 81.4% | 81.4% | 81.6% | 81.6% |
RSS | 2273.1 | 2272.0 | 2272.5 | 2253.9 | 2227.5 | 2236.5 |
WRSS | 28,072.2 | 28,339.0 | 28,320.3 | 23,147.8 | 19,745.0 | 19,757.9 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
De Grange, L.; Raveau, S.; González, F. A Maximum Entropy Fixed-Point Route Choice Model for Route Correlation. Entropy 2014, 16, 3635-3654. https://doi.org/10.3390/e16073635
De Grange L, Raveau S, González F. A Maximum Entropy Fixed-Point Route Choice Model for Route Correlation. Entropy. 2014; 16(7):3635-3654. https://doi.org/10.3390/e16073635
Chicago/Turabian StyleDe Grange, Louis, Sebastián Raveau, and Felipe González. 2014. "A Maximum Entropy Fixed-Point Route Choice Model for Route Correlation" Entropy 16, no. 7: 3635-3654. https://doi.org/10.3390/e16073635
APA StyleDe Grange, L., Raveau, S., & González, F. (2014). A Maximum Entropy Fixed-Point Route Choice Model for Route Correlation. Entropy, 16(7), 3635-3654. https://doi.org/10.3390/e16073635