Information-Theoretic Bounded Rationality and ε-Optimality
Abstract
:1. Introduction
2. Methods
3. Results
Theorem 1 (ε-Optimality).
Proof
Theorem 2 (ε-Optimality for rank utilities).
Proof
4. Adversarial Environments
4.1. Unknown Action Set
Theorem 3 (ε-Optimality in adversarial environments).
Proof
4.2. Unknown Utility
5. Discussion and Conclusion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gintis, H. A Framework for the Unification of the Behavioral Sciences. Behav. Brain Sci 2006, 30, 1–61. [Google Scholar]
- Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 1st ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1995. [Google Scholar]
- Kreps, D.M. Notes on the Theory of Choice; Westview Press: Boulder, CO, USA, 1988. [Google Scholar]
- Trommershauser, J.; Maloney, L.T.; Landy, M.S. Decision making, movement planning and statistical decision theory. Trends Cogn. Sci 2008, 12, 291–297. [Google Scholar]
- Braun, D.A.; Nagengast, A.J.; Wolpert, D. Risk-sensitivity in sensorimotor control. Front. Hum. Neurosci 2011, 5. [Google Scholar] [CrossRef]
- Wolpert, D.M.; Landy, M.S. Motor control is decision-making. Curr. Opin. Neurobiol 2012, 22, 996–1003. [Google Scholar]
- Fishburn, P. The Foundations of Expected Utility; D. Reidel Publishing: Dordrecht, The Netherlands, 1982. [Google Scholar]
- Neumann, J.V.; Morgenstern, O. Theory of Games and Economic Behavior; Princeton University Press: Princeton, NJ, USA, 1944. [Google Scholar]
- Simon, H.A. Rational choice and the structure of the environment. Psychol. Rev 1956, 63, 129–138. [Google Scholar]
- Simon, H. Theories of Bounded Rationality. In Decision and Organization; McGuire, C.B., Radner, R., Eds.; North Holland Pub. Co.: Amsterdam, The Netherlands, 1972; pp. 161–176. [Google Scholar]
- Simon, H. Models of Bounded Rationality; MIT Press: Cambridge, MA, USA, 1984. [Google Scholar]
- Aumann, R.J. Rationality and Bounded Rationality. Games Econ. Behav 1997, 21, 2–14. [Google Scholar]
- Rubinstein, A. Modeling bounded rationality; MIT Press: Cambridge, MA, USA,, 1998. [Google Scholar]
- Kahneman, D. Maps of Bounded Rationality: Psychology for Behavioral Economics. Am. Econ. Rev 2003, 93, 1449–1475. [Google Scholar]
- McKelvey, R.D.; Palfrey, T.R. Quantal Response Equilibria for Normal Form Games. Games Econ. Behav 1995, 10, 6–38. [Google Scholar]
- Mckelvey, R.; Palfrey, T.R. Quantal Response Equilibria for Extensive Form Games. Exp. Econ 1998, 1, 9–41. [Google Scholar]
- Wolpert, D.H. Information Theory—The Bridge Connecting Bounded Rational Game Theory and Statistical Physics. In Complex Engineered Systems; Braha, D., Minai, A.A., Bar-Yam, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 262–290. [Google Scholar]
- Spiegler, R. Bounded Rationality and Industrial Organization; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Jones, B.D. Bounded Rationality Political Science: Lessons from Public Administration and Public Policy. J. Public Adm. Res. Theory 2003, 13, 395–412. [Google Scholar]
- Gigerenzer, G.; Selten, R. Bounded rationality: The adaptive toolbox; MIT Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Camerer, C. Behavioral Game Theory: Experiments in Strategic Interaction; Princeton University Press: Princeton, NJ, USA, 2003. [Google Scholar]
- Howes, A.; Lewis, R.; Vera, A. Rational adaptation under task and processing constraints: implications for testing theories of cognition and action. Psychol. Rev 2009, 116, 717–751. [Google Scholar]
- Janssen, C.P.; Brumby, D.P.; Dowell, J.; Chater, N.; Howes, A. Identifying Optimum Performance Trade-Offs Using a Cognitively Bounded Rational Analysis Model of Discretionary Task Interleaving. Top. Cogn. Sci 2011, 3, 123–139. [Google Scholar]
- Lewis, R.; Howes, A.; Singh, S. Computational rationality: Linking mechanism and behavior through bounded utility maximization. Top. Cogn. Sci 2014, in press. [Google Scholar]
- Lipman, B. Information Processing and Bounded Rationality: A Survey. Can. J. Econ 1995, 28, 42–67. [Google Scholar]
- Russell, S. Rationality and Intelligence. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, Montreal, Canada, 20–25 August 1995; Morgan Kaufmann: San Francisco, CA, USA, 1995; pp. 950–957. [Google Scholar]
- Russell, S.; Subramanian, D. Provably bounded-optimal agents. J. Artif. Intell. Res 1995, 3, 575–609. [Google Scholar]
- Glimcher, P.; Fehr, E.; Camerer, C.; Poldrack, R. Neuroeconomics: Decision Making and the Brain; Elsevier Science: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Friston, K.; Schwartenbeck, P.; Fitzgerald, T.; Moutoussis, M.; Behrens, T.; Dolan, R.J. The anatomy of choice: Active inference and agency. Front. Hum. Neurosci 2013, 7. [Google Scholar] [CrossRef]
- Dixon, H. Some thoughts on economic theory and artificial intelligence. In Artificial Intelligence and Economic Analysis: Prospects and Problems; Moss, S., Rae, J., Eds.; Edward Elgar Publishing: Cheltenham, UK, 1992; pp. 131–154. [Google Scholar]
- Ortega, P.; Braun, D. A conversion between utility and information. Proceedings of the Third Conference on Artificial General Intelligence, Lugano, Switzerland, 5–8 March 2010; Atlantis Press: Paris, France, 2010; pp. 115–120. [Google Scholar]
- Ortega, P.A.; Braun, D.A. Information, utility and bounded rationality. In Artificial General Intelligence; Proceedings of the 4th International Conference on Artificial General Intelligence (AGI 2011), Mountain View, CA, USA, 3–6 August 2011, Schmidhuber, J., Thórisson, K.R., Looks, M., Eds.; Lecture Notes on Artificial Intelligence, Volume 6830; Springer: Berlin/Heidelberg, Germany, 2011; pp. 269–274. [Google Scholar]
- Braun, D.A.; Ortega, P.A.; Theodorou, E.; Schaal, S. Path integral control and bounded rationality. Proceedings of IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning, Paris, France, 11–15 April 2011; pp. 202–209.
- Ortega, P.A.; Braun, D.A. Thermodynamics as a theory of decision-making with information-processing costs. Proc. R. Soc. A 2013, 469. [Google Scholar] [CrossRef]
- Wolpert, D.; Harre, M.; Bertschinger, N.; Olbrich, E.; Jost, J. Hysteresis effects of changing parameters of noncooperative games. Phys. Rev. E 2012, 85, 036102. [Google Scholar]
- Luce, R. Individual choice behavior; Wiley: Oxford, UK, 1959. [Google Scholar]
- McFadden, D. Conditional logit analysis of qualitative choice behavior. In Frontiers in Econometrics; Zarembka, P., Ed.; Academic Press: New York, NY, USA, 1974; pp. 105–142. [Google Scholar]
- Meginnis, J. A new class of symmetric utility rules for gambles, subjective marginal probability functions, and a generalized Bayesian rule. In 1976 Proceedings of the American Statistical Association, Business and Economic Statistics Section; American Statistical Association: Washington, DC, USA, 1976; pp. 471–476. [Google Scholar]
- Fudenberg, D.; Kreps, D. Learning mixed equilibria. Games Econ. Behav 1993, 5, 320–367. [Google Scholar]
- Sutton, R.; Barto, A. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Luce, R. Utility of gains and losses: Measurement-theoretical and experimental approaches; Erlbaum: Mahwah, NJ, USA, 2000. [Google Scholar]
- Train, K. Discrete Choice Methods with Simulation, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Toussaint, M.; Harmeling, S.; Storkey, A. Probabilistic inference for solving (PO)MDPs; Technical Report; University of Edinburgh: Edinburgh, UK, 2006. [Google Scholar]
- Ortega, P.A.; Braun, D.A. A minimum relative entropy principle for learning and acting. J. Artif. Intell. Res 2010, 38, 475–511. [Google Scholar]
- Friston, K. The free-energy principle: A unified brain theory? Nat. Rev. Neurosci 2010, 11, 127–138. [Google Scholar]
- Tishby, N.; Polani, D. Information Theory of Decisions and Actions. In Perception-reason-action cycle: Models, algorithms and systems; Vassilis, H.T., Ed.; Springer: Berlin, Germany, 2011. [Google Scholar]
- Kappen, H.; Gómez, V.; Opper, M. Optimal control as a graphical model inference problem. Mach. Learn 2012, 1, 1–11. [Google Scholar]
- Vijayakumar, S.; Rawlik, K.; Toussaint, M. On Stochastic Optimal Control and Reinforcement Learning by Approximate Inference. Proceedings of Robotics: Science and Systems, Sydney, Australia, 9–13 July 2012; MIT Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Ortega, P.A.; Braun, D.A. Free Energy and the Generalized Optimality Equations for Sequential Decision Making. Proceedings of the Tenth European Workshop on Reinforcement Learning, Edinburgh, Scotland, 30 June–1 July 2012.
- Ortega, P.A.; Braun, D.A. Generalized Thompson sampling for sequential decision-making and causal inference. Complex Adap. Syst. Model 2014, 5, 269–274. [Google Scholar]
- Ortega, P.A.; Braun, D.A.; Tishby, N. Monte Carlo Methods for Exact & Efficient Solution of the Generalized Optimality Equations. Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–5 June 2014.
- Auer, P.; Cesa-Bianchi, N.; Freund, Y.; Schapire, R.E. Gambling in a rigged casino: The adversarial multi-armed bandit problem. Proceedings of IEEE 36th Annual Symposium on Foundations of Computer Science, Milwaukee, WI, USA, 23–25 October 1995; pp. 322–331.
- Freund, Y.; Schapire, R.E. A Decision-theoretic Generalization of On-line Learning and an Application to Boosting. J. Comput. Syst. Sci 1997, 55, 119–139. [Google Scholar]
- Feynman, R.P. The Feynman Lectures on Computation; Addison-Wesley: Boston, MA, USA, 1996. [Google Scholar]
- Fudenberg, D.; Levine, D. The Theory of Learning in Games; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Noam, N.; Roughgarden, T.; Éva, T.; Vazirani, V. Algorithmic Game Theory; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Fudenberg, D.; Levine, D.K. Consistency and cautious fictitious play. J. Econ. Dyn. Control 1995, 19, 1065–1089. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Braun, D.A.; Ortega, P.A. Information-Theoretic Bounded Rationality and ε-Optimality. Entropy 2014, 16, 4662-4676. https://doi.org/10.3390/e16084662
Braun DA, Ortega PA. Information-Theoretic Bounded Rationality and ε-Optimality. Entropy. 2014; 16(8):4662-4676. https://doi.org/10.3390/e16084662
Chicago/Turabian StyleBraun, Daniel A., and Pedro A. Ortega. 2014. "Information-Theoretic Bounded Rationality and ε-Optimality" Entropy 16, no. 8: 4662-4676. https://doi.org/10.3390/e16084662
APA StyleBraun, D. A., & Ortega, P. A. (2014). Information-Theoretic Bounded Rationality and ε-Optimality. Entropy, 16(8), 4662-4676. https://doi.org/10.3390/e16084662