Distributed Extreme Learning Machine for Nonlinear Learning over Network
Abstract
:1. Introduction
2. Preliminaries
2.1. Distributed Nonlinear Model
2.2. SLFNand ELM Algorithm
3. Distributed ELM for Nonlinear Learning
3.1. Distributed ELM-LMS
3.2. Distributed ELM-RLS
4. Applications
4.1. Regression Problems
4.1.1. Synthetic Data Case: Fitting of the “Sinc” Function
4.1.2. Real Data Case: Abalone Age Prediction Problem
4.2. Classification Problems
4.2.1. Synthetic Data Case: Classification of “Double-Moon”
4.2.2. Real data Case: Iris Plant Classification Problem
4.3. Inhomogeneous Data Cases
4.3.1. Fitting of the “Sinc” Function with Inhomogeneous Data
4.3.2. Classification of the “Double-Moon” with Inhomogeneous Data
5. Conclusion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cattivelli, F.S.; Lopes, C.G.; Sayed, A.H. Diffusion LMS strategies for distributed estimation. IEEE Trans. Signal Process 2010, 58, 1035–1048. [Google Scholar]
- Dimakis, A.G.; Kar, S.; Moura, J.M.F.M.; Rabbat, G.; Scaglione, A. Gossip algorithms for distributed signal processing. Proc. IEEE 2011, 98, 1847–1864. [Google Scholar]
- Liu, Y.; Li, C.; Tang, W.K.S.; Zhang, Z. Distributed estimation over complex networks. Inf. Sci 2012, 197, 91–104. [Google Scholar]
- Schizas, I.D.; Mateos, G.; Giannakis, G.B. Distributed LMS for consensus-based in-network adaptive processing. IEEE Trans. Signal Process 2009, 57, 2365–2382. [Google Scholar]
- Li, C.; Shen, P.; Liu, Y.; Zhang, Z. Diffusion information theoretic learning for distributed estimation over network. IEEE Trans. Signal Process 2013, 61, 4011–4024. [Google Scholar]
- Lopes, C.G.; Sayed, A.H. Distributed processing over adaptive networks. Proceedings of the Adaptive Sensor Array Processing Workshop, Lexington, MA, USA, 6–7 June 2006; pp. 1–5.
- Cattivelli, F.S.; Sayed, A.H. Analysis of spatial and incermental LMS processing for distribued estimation. IEEE Trans. Signal Process 2011, 59, 1465–1480. [Google Scholar]
- Liu, W.F.; Pokharel, P.P.; Principe, J.C. The kernel least-mean-square algorithm. IEEE Trans. Signal Process 2008, 56, 543–554. [Google Scholar]
- Kivinen, J.; Smola, A.J.; Williamson, R.C. Online learning with kernels. IEEE Trans. Signal Process 2004, 52, 2165–2176. [Google Scholar]
- Censor, Y.; Zenios, S.A. Parallel Optimization: Theory, Algorithms, and Applications; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Predd, J.B.; Kulkarni, S.R.; Poor, H.V. Distributed kernel regression: An algorithm for training collaboratively. Proceedings of the 2006 IEEE Information Theory Workshop, Punta del Este, Uruguay, 13–17 March 2006; pp. 332–336.
- Predd, J.B.; Kulkarni, S.R.; Poor, H.V. A collaborative training algorithm for distributed learning. IEEE Trans. Inf. Theory 2009, 55, 1856–1871. [Google Scholar]
- Perez-Cruz, F.; Kulkarni, S.R. Robust and low complexity distributed kernel least squares learning in sensor networks. IEEE Signal Process. Lett 2010, 17, 355–358. [Google Scholar]
- Chen, S.; Cowan, C.F.N.; Grant, P.M. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Netw 1991, 2, 302–309. [Google Scholar]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: A new learning scheme of feedforward neural networks. Proceedings of International Joint Conference on Neural Networks, Budapest, Hungary, 25–29 July 2004; 2, pp. 985–990.
- Huang, G.B.; Siew, C.K. Extreme learning machine: RBF network case. Proceedings of the 8th International Conference on Control, Automation, Robotics and Vision, Kunming, China, 6–9 December 2004; 2, pp. 1029–1036.
- Liang, N.Y.; Huang, G.B.; Saratchandran, P.; Sundararajan, N. A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. Neural Netw 2006, 17, 1411–1423. [Google Scholar]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar]
- Huang, G.B.; Zhou, H.; Ding, X.; Zhang, R. Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. B 2012, 42, 513–529. [Google Scholar]
- Rao, C.R.; Mitra, S.K. Generalized Inverse of Matrices and its Applications; Wiley: New York, NY, USA, 1971. [Google Scholar]
- Tu, S.Y.; Sayed, A.H. Diffusion strategies outperform consensus strategies for distributed estiamtion over adaptive networks. IEEE Trans. Signal Process 2012, 60, 6217–6234. [Google Scholar]
- Lopes, C.G.; Sayed, A.H. Diffusion least-mean squares over adaptive networks. Proceedings of the International Conference on Acoustics, Speech, Signal Processing, Honolulu, HI, USA, 15–20 April 2007; 3, pp. 917–920.
- Lopes, C.G.; Sayed, A.H. Diffusion least-mean squares over adaptive networks: Formulation and performance analysis. IEEE Trans. Signal Process 2008, 56, 3122–3136. [Google Scholar]
- Liu, Y.; Li, C.; Zhang, Z. Diffusion sparse least-mean squares over networks. IEEE Trans. Signal Process 2012, 60, 4480–4485. [Google Scholar]
- Cattivelli, F.S.; Lopes, C.G.; Sayed, A.H. A diffusion RLS scheme for distributed estimation over adaptive networks. In. Proceedings of the IEEE 8th Workshop on Signal Processing Advances in Wireless Communications, Helsinki, Finland, 17–20 June 2007; pp. 1–5.
- Cattivelli, F.S.; Lopes, C.G.; Sayed, A.H. Diffusion recursive least-squares for distributed estimation over adaptive networks. IEEE Trans. Signal Process 2008, 56, 1865–1877. [Google Scholar]
- Liu, Z.; Liu, Y.; Li, C. Distributed sparse recursive least-squares over networks. IEEE Trans. Signal Process 2014, 62, 1386–1395. [Google Scholar]
- Xiao, L.; Boyd, S. Fast linear iterations for distributed averaging. Syst. Control Lett 2004, 53, 65–78. [Google Scholar]
- Takahashi, N.; Yamada, I.; Sayed, A.H. Diffusion least-mean squares with adaptive combiners. Proceedings of the International Conference on Acoustics, Speech, Signal Processing, Taipei, Taiwan, 19–24 April 2009; pp. 2845–2848.
- Takahashi, N.; Yamada, I.; Sayed, A.H. Diffusion least-mean squares with adaptive combiners: formulation and performance analysis. IEEE Trans. Signal Process 2010, 58, 4795–4810. [Google Scholar]
- Scherber, D.S.; Papadopoulos, H.C. Locally constructed algorithms for distributed computations in ad hoc networks. Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks, New York, NY, USA, 26–27 April 2004; pp. 11–19.
- Sayed, A.H.; Cattivelli, F. Distributed adaptive learning mechanisms. In Handbook on Array Processing and Sensor Networks; Haykin, S., Ray Liu, K.J., Eds.; Wiley: New York, NY, USA, 2009. [Google Scholar]
- Blake, C.; Merz, C. UCI Repository of Machine Learning Databases. Available Online: http://archive.ics.uci.edu/ml/datasets.html accessed on 12 February 2015.
Algorithms | steady-state EMSE |
---|---|
non-coopELM-LMS | 0.1232 |
dELM-LMS | 0.1036 |
centralized ELM-LMS | 0.0989 |
non-coop ELM-RLS | 0.1079 |
dELM-RLS | 0.0917 |
centralized ELM-RLS | 0.0811 |
Algorithms | Steady-state NMCR |
---|---|
non-coop ELM-LMS | 8.57% |
dELM-LMS | 5.46% |
centralized ELM-LMS | 5.39% |
non-coop ELM-RLS | 3.35% |
dELM-RLS | 2.48% |
centralized ELM-RLS | 2.41% |
Algorithms | Steady-state NMCR |
---|---|
non-coop ELM-LMS | 25.38% |
dELM-LMS | 10.50% |
centralized ELM-LMS | 9.87 |
non-coop ELM-RLS | 11.13% |
dELM-RLS | 4.24% |
centralized ELM-RLS | 3.45% |
Algorithms | Steady-state NMCR |
non-coop ELM-LMS | 13.10% |
dELM-LMS | 5.51% |
centralized ELM-LMS | 5.41% |
non-coop ELM-RLS | 9.74% |
dELM-RLS | 2.84% |
centralized ELM-RLS | 2.40% |
© 2015 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Li, C. Distributed Extreme Learning Machine for Nonlinear Learning over Network. Entropy 2015, 17, 818-840. https://doi.org/10.3390/e17020818
Huang S, Li C. Distributed Extreme Learning Machine for Nonlinear Learning over Network. Entropy. 2015; 17(2):818-840. https://doi.org/10.3390/e17020818
Chicago/Turabian StyleHuang, Songyan, and Chunguang Li. 2015. "Distributed Extreme Learning Machine for Nonlinear Learning over Network" Entropy 17, no. 2: 818-840. https://doi.org/10.3390/e17020818
APA StyleHuang, S., & Li, C. (2015). Distributed Extreme Learning Machine for Nonlinear Learning over Network. Entropy, 17(2), 818-840. https://doi.org/10.3390/e17020818