Generalized Stochastic Fokker-Planck Equations
Abstract
:1. Introduction
2. Overdamped Brownian Particles with Long-Range Interactions
2.1. The N-body Smoluchowski Equation
2.2. Long-Range Interactions
2.3. Complex Systems: Generalized Thermodynamics
2.4. The Free Energy F [ρ]
2.5. Variational Principle
2.6. Equilibrium States
3. Generalized Mean Field Fokker-Planck Equations
3.1. Simple Systems: The Mean Field Smoluchowski Equation
3.2. Complex Systems: The Generalized Mean Field Smoluchowski Equation
3.3. Gradient Flow
3.4. Generalized H-Theorem
3.5. Onsager’s Linear Thermodynamics
3.6. Particular Form: Normal Mobility and Generalized Diffusion
3.7. Particular Form: Normal Diffusion and Generalized Mobility
3.8. Generalized Smoluchowski Equation
3.9. Expression in Terms of the Enthalpy
4. Theory of Fluctuations
4.1. Simple Systems: The Stochastic Smoluchowski Equation
4.2. Complex Systems: The Generalized Stochastic Smoluchowski Equation
4.3. Particular Form: Normal Mobility and Generalized Diffusion
4.4. Particular Form: Normal Diffusion and Generalized Mobility
4.5. Equivalent Forms of the Generalized Stochastic Fokker-Planck Equation
5. A New Form of Generalized Entropy
- For γ = 1 and σ0 → +∞, we recover the Smoluchowski equation which is a FP equation with a normal diffusion and a normal mobility [4]. It is associated with the Boltzmann entropy
- For γ ≠ 1 and σ0 → +∞, we get a GFP equation with an anomalous diffusion and a constant mobility [30,31]. It is associated with the Tsallis entropy
- For γ = 1 and σ0 < +∞, we get the fermionic (K = +1) or bosonic (K = −1) Smoluchowski equation, which is a GFP equation with a normal diffusion and a variable mobility taking into account exclusion or inclusion constraints in position space [20,27–29,32,36,37,39,42,43,46,53]. It is associated with the Fermi-Dirac (K = +1) or Bose-Einstein (K = −1) entropy in position space
- For γ = 2, Equation (107) reduces to [46]:
- For γ → 0 and T → +∞ in such a way that γT is finite, and noted T again, Equation (107) becomes
6. Generalized Stochastic Cahn-Hilliard Equations
6.1. Short-Range Interactions
6.2. Analogy with Cahn-Hilliard Equations
6.3. Expanded Form of the Generalized Stochastic Cahn-Hilliard Equation
6.4. Particular Form: Anomalous Diffusion and Normal Mobility
6.5. Particular Form: Normal Diffusion and Anomalous Mobility
6.6. Equivalent Forms of the Generalized Stochastic Cahn-Hilliard Equation
6.7. Simple Systems: Normal Diffusion and Normal Mobility
7. Analogy with An Effective Generalized Thermodynamics
7.1. General Results
7.2. Simple Systems
7.3. Simple Systems at T = 0
8. Application to Systems of Physical Interest
8.1. Self-Gravitating Brownian Particles
8.2. Colloid Particles at a Fluid Interface
8.3. Superconductor of Type-II
8.4. Dynamical Theory of Nucleation
8.5. Chemotaxis of Bacterial Populations
8.6. Application to 2D Turbulence
9. Conclusion
A. Application of the Landau-Lifshitz Theory of Fluctuations
B. Stochastic Ginzburg-Landau and Cahn-Hilliard Equations
C. Long and Short-Range Interactions
Conflicts of Interest
References
- Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys 1905, 17, 549–560. [Google Scholar]
- Einstein, A. Zur Theorie der Brownschen Bewegung. Ann. Phys 1906, 19, 371–381. [Google Scholar]
- Langevin, P. Sur la théorie du mouvement brownien. Comptes rendus 1908, 146, 530–533. [Google Scholar]
- von Smoluchowski, M. Über Brownsche Molekularbewegung unter Einwirkung äusserer Kräfte und deren Zusammenhang mit der verallgemeinerten Diffusionsgleichung. Ann. Phys 1915, 48, 1103–1112. [Google Scholar]
- Fokker, A.D. Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Ann. Phys 1914, 43, 810–820. [Google Scholar]
- Planck, M. Über einen satz der statistischen dynamik und seine erweiterung in der quanten-theorie. Sitzber. Preuss. Akad. Wiss. 1917, 324–341. [Google Scholar]
- Risken, H. The Fokker-Planck Equation: Methods of Solutions and Applications, 2nd ed; Series in Synergetics; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Klein, O. Zur statistischen Theorie der Suspensionen und Lösungen. Arkiv for Matematik, Astronomi, och Fysik 1921, 16, 1–51. [Google Scholar]
- Kramers, H.A. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica A 1940, 7, 284–304. [Google Scholar]
- Campa, A.; Dauxois, T.; Fanelli, D.; Ruffo, S. Physics of Long-Range Interacting Systems; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Chavanis, P.H. Kinetic theory of spatially homogeneous systems with long-range interactions: I. General results. Eur. Phys. J. Plus 2012, 127, 19–41. [Google Scholar]
- Chavanis, P.H. Kinetic theory of spatially homogeneous systems with long-range interactions: II. Historic and basic equations. Eur. Phys. J. Plus 2013, 128, 126–153. [Google Scholar]
- Dauxois, T.; Ruffo, S.; Arimondo, E.; Wilkens, M. (Eds.) Dynamics and Thermodynamics of Systems with Long Range Interactions; Lecture Notes in Physics; Volume 602, Springer: Berlin/Heidelberg, Germany, 2002.
- Chavanis, P.H. Initial value problem for the linearized mean field Kramers equation with long-range interactions. Eur. Phys. J. Plus 2013, 128, 106–136. [Google Scholar]
- Chavanis, P.H. Hamiltonian and Brownian systems with long-range interactions: V. Stochastic kinetic equations and theory of fluctuations. Physica A 2008, 387, 5716–5740. [Google Scholar]
- Sire, C.; Chavanis, P.H. Thermodynamics and collapse of self-gravitating Brownian particles in D dimensions. Phys. Rev. E 2002, 66, 046133. [Google Scholar]
- Chavanis, P.H.; The, Brownian. mean field model. Eur. Phys. J. B 2014, 87, 120–152. [Google Scholar]
- Chavanis, P.H. A. stochastic Keller-Segel model of chemotaxis. Commun. Nonlinear Sci. Numer. Simulat. 2010, 15, 60–70. [Google Scholar]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics; Springer: New York, NY, USA, 2009. [Google Scholar]
- Nordheim, L.W. On the Kinetic Method in the New Statistics and Its Application in the Electron Theory of Conductivity. Proc. R. Soc. London Ser. A 1928, 119, 689–698. [Google Scholar]
- Bloch, F. Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys 1928, 52, 555–600. [Google Scholar]
- Uehling, E.A.; Uhlenbeck, G.E. Transport Phenomena in Einstein-Bose and Fermi-Dirac Gases. I. Phys. Rev 1933, 43, 552. [Google Scholar]
- Lima, J.A.S.; Silva, R.; Plastino, A.R. Nonextensive Thermostatistics and the H Theorem. Phys. Rev. Lett. 2001, 86, 2938. [Google Scholar]
- Kaniadakis, G. Non-linear kinetics underlying generalized statistics. Physica A 2001, 296, 405–425. [Google Scholar]
- Chavanis, P.H. Generalized thermodynamics and kinetic equations: Boltzmann, Landau, Kramers and Smoluchowski. Physica A 2004, 332, 89–122. [Google Scholar]
- Kompaneets, A.S. The Establishment of Thermal Equilibrium between Quanta and Electrons. Sov. Phys. JETP 1957, 4, 730–737. [Google Scholar]
- Robert, R.; Sommeria, J. Relaxation towards a statistical equilibrium state in two-dimensional perfect fluid dynamics. Phys. Rev. Lett. 1992, 69, 2776. [Google Scholar]
- Kaniadakis, G.; Quarati, P. Kinetic equation for classical particles obeying an exclusion principle. Phys. Rev. E 1993, 48, 4263. [Google Scholar]
- Kaniadakis, G.; Quarati, P. Classical model of bosons and fermions. Phys. Rev. E 1994, 49, 5103. [Google Scholar]
- Plastino, A.R.; Plastino, A. Non-extensive statistical mechanics and generalized Fokker-Planck equation. Physica A 1995, 222, 347–354. [Google Scholar]
- Tsallis, C.; Bukman, D.J. Anomalous diffusion in the presence of external forces: Exact time-dependent solutions and their thermostatistical basis. Phys. Rev. E 1996, 54, R2197. [Google Scholar]
- Chavanis, P.H.; Sommeria, J.; Robert, R. Statistical Mechanics of Two-dimensional Vortices and Collisionless Stellar Systems. Astrophys. J 1996, 471, 385–399. [Google Scholar]
- Stariolo, D. Aging in models of nonlinear diffusion. Phys. Rev. E 1997, 55, 4806. [Google Scholar]
- Borland, L. Microscopic dynamics of the nonlinear Fokker-Planck equation: A phenomenological model. Phys. Rev. E 1998, 57, 6634. [Google Scholar]
- Martinez, S.; Plastino, A.R.; Plastino, A. Nonlinear Fokker-Planck equations and generalized entropies. Physica A 1998, 259, 183–192. [Google Scholar]
- Frank, T.D.; Daffertshofer, A. Nonlinear Fokker-Planck equations whose stationary solutions make entropy-like functionals stationary. Physica A 1999, 272, 497–508. [Google Scholar]
- Hillen, T.; Painter, K. Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math. 2001, 26, 280–301. [Google Scholar]
- Frank, T.D.; Generalized, Fokker-Planck. equations derived from generalized linear nonequilibrium thermodynamics. Physica A 2002, 310, 397–412. [Google Scholar]
- Chavanis, P.H. Generalized thermodynamics and Fokker-Planck equations: Applications to stellar dynamics and two-dimensional turbulence. Phys. Rev. E 2003, 68, 036108. [Google Scholar]
- Curado, E.; Nobre, F. Derivation of nonlinear Fokker-Planck equations by means of approximations to the master equation. Phys. Rev. E 2003, 67, 021107. [Google Scholar]
- Nobre, F.; Curado, E.; Rowlands, G. A procedure for obtaining general nonlinear Fokker-Planck equations. Physica A 2004, 334, 109–118. [Google Scholar]
- Chavanis, P.H. Phase separation of bacterial colonies in a limit of high degradation. Eur. Phys. J. B 2006, 54, 525–549. [Google Scholar]
- Sopik, J.; Sire, C.; Chavanis, P.H. Dynamics of the Bose-Einstein condensation: Analogy with the collapse dynamics of a classical self-gravitating Brownian gas. Phys. Rev. E 2006, 74, 011112. [Google Scholar]
- Ribeiro, S.; Nobre, F.; Curado, E. Classes of N-Dimensional Nonlinear Fokker-Planck Equations Associated to Tsallis Entropy. Entropy 2011, 13, 1928–1944. [Google Scholar]
- Frank, T.D. Nonlinear Fokker-Planck Equations: Fundamentals and Applications; Springer-Verlag: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Chavanis, P.H. Nonlinear mean field Fokker-Planck equations. Application to the chemotaxis of biological populations. Eur. Phys. J. B 2008, 62, 179–208. [Google Scholar]
- Chavanis, P.H.; Delfini, L. Random transitions described by the stochastic Smoluchowski-Poisson system and by the stochastic Keller-Segel model. Phys. Rev. E 2014, 89, 032139. [Google Scholar]
- Campa, A.; Dauxois, T.; Ruffo, S. Statistical mechanics and dynamics of solvable models with long-range interactions. Phys. Rep. 2009, 480, 57–159. [Google Scholar]
- Chavanis, P.H. Emergence of non-Boltzmannian entropies: The role of microscopic constraints, 2015; in preparation.
- Chavanis, P.H. On the lifetime of metastable states in self-gravitating systems. Astron. Astrophys 2005, 432, 117–138. [Google Scholar]
- Landau, L; Lifshitz, E. Fluid Mechanics; Pergamon: London, UK, 1959. [Google Scholar]
- Dean, D.S. Langevin equation for the density of a system of interacting Langevin processes. J. Phys. A 1996, 29, L613. [Google Scholar]
- Chavanis, P.H. Gravitational phase transitions with an exclusion constraint in position space. Eur. Phys. J. B 2014, 87, 1–26. [Google Scholar]
- Chavanis, P.H.; Sire, C. Logotropic distributions. Physica A 2007, 375, 140–158. [Google Scholar]
- Bray, A. Theory of phase-ordering kinetics. Adv. Phys 1994, 43, 357–459. [Google Scholar]
- Dalfovo, F; Giorgini, S.; Pitaevskii, L.P.; Stringari, S. Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys 1999, 71, 463. [Google Scholar]
- Chavanis, P.H. Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions. I. Analytical results. Phys. Rev. D 2011, 84, 043531. [Google Scholar]
- Chavanis, P.H.; Sire, C. Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. I. Overdamped models. Phys. Rev. E 2006, 73, 066103. [Google Scholar]
- Chavanis, P.H.; Sire, C. Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. II. Inertial models. Phys. Rev. E 2006, 73, 066104. [Google Scholar]
- Sire, C.; Chavanis, P.H. Postcollapse dynamics of self-gravitating Brownian particles and bacterial populations. Phys. Rev. E 2004, 69, 066109. [Google Scholar]
- Chavanis, P.H.; Sire, C. Estimate of blow-up and relaxation time for self-gravitating Brownian particles and bacterial populations. Phys. Rev. E 2004, 70, 026115. [Google Scholar]
- Chavanis, P.H.; Sire, C. Exact analytical solution of the collapse of self-gravitating Brownian particles and bacterial populations at zero temperature. Phys. Rev. E 2011, 83, 031131. [Google Scholar]
- Chavanis, P.H.; Sire, C. Jeans type analysis of chemotactic collapse. Physica A 2008, 387, 4033–4052. [Google Scholar]
- Chavanis, P.H.; Delfini, L. Phase transitions in self-gravitating systems and bacterial populations with a screened attractive potential. Phys. Rev. E 2010, 81, 051103. [Google Scholar]
- Chavanis, P.H.; Sire, C. Anomalous diffusion and collapse of self-gravitating Langevin particles in D dimensions. Phys. Rev. E 2004, 69, 016116. [Google Scholar]
- Debye, P.; Hückel, E. Zur Theorie der Elektrolyte II. Das Grenzgesetz für die elektrische Leitfähigkeit. Phys. Z 1923, 24, 305–325. [Google Scholar]
- Nernst, W. Zur Kinetik der in Lösung befindlichen Körper. Erste Abhandlung. Theorie der diffusion. Z. Phys. Chem 1888, 2, 613–637. [Google Scholar]
- Nernst, W. Die elektromotorische Wirksamkeit der Jonen. Z. Phys. Chem. 1889, 4, 129–181. [Google Scholar]
- Planck, M. Ueber die Erregung von Electricität und Wärme in Electrolyten. Ann. Phys. 1890, 39, 161–186. [Google Scholar]
- Chavanis, P.H.; Two-dimensional, Brownian. vortices. Physica A 2008, 28, 6917–6942. [Google Scholar]
- Chavanis, P.H. Statistical mechanics of two-dimensional point vortices: Relaxation equations and strong mixing limit. Eur. Phys. J. B 2014, 87, 81–104. [Google Scholar]
- Onsager, L. Statistical Hydrodynamics. Nuovo Cimento Suppl. 1949, 6, 279–287. [Google Scholar]
- Domínguez, A.; Oettel, M.; Dietrich, S. Dynamics of colloidal particles with capillary interactions. Phys. Rev. E 2010, 82, 011402. [Google Scholar]
- Zapperi, S.; Moreira, A.A.; Andrade, J.S. Flux Front Penetration in Disordered Superconductors. Phys. Rev. Lett. 2001, 86, 3622. [Google Scholar]
- Andrade, J.S.; da Silva, G.F.T.; Moreira, A.A.; Nobre, F.D.; Curado, E.M.F. Thermostatistics of Overdamped Motion of Interacting Particles. Phys. Rev. Lett. 2010, 105, 260601. [Google Scholar]
- Lutsko, J.F. A dynamical theory of nucleation for colloids and macromolecules. J. Chem. Phys. 2012, 136, 034509. [Google Scholar]
- Keller, E.F.; Segel, L.A. Model for Chemotaxis. J. Theor. Biol. 1971, 30, 225–234. [Google Scholar]
- Newman, T.J.; Grima, R. Many-body theory of chemotactic cell-cell interactions. Phys. Rev. E 2004, 70, 051916. [Google Scholar]
- Chavanis, P.H.; Sire, C. Kinetic and hydrodynamic models of chemotactic aggregation. Physica A 2007, 384, 199–222. [Google Scholar]
- Binney, J; Tremaine, S. Galactic Dynamics; Princeton University Press: Princeton, NJ, USA, 1987. [Google Scholar]
- Bouchet, F.; Venaille, A. Statistical mechanics of two-dimensional and geophysical flows. Phys. Rep. 2012, 515, 227–295. [Google Scholar]
- Miller, J. Statistical mechanics of Euler equations in two dimensions. Phys. Rev. Lett. 1990, 65, 2137. [Google Scholar]
- Robert, R.; Sommeria, J. Statistical equililbrium states for two-dimensional flows. J. Fluid Mech. 1991, 229, 291–310. [Google Scholar]
- Ellis, R.; Haven, K.; Turkington, B. Nonequivalent statistical equilibrium ensembles and refined stability theorems for most probable flows. Nonlinearity 2002, 15, 239–255. [Google Scholar]
- Chavanis, P.H. Statistical mechanics of geophysical turbulence: application to jovian flows and Jupiter’s great red spot. Physica D 2005, 200, 257–272. [Google Scholar]
- Chavanis, P.H. Coarse-grained distributions and superstatistics. Physica A 2006, 359, 177–212. [Google Scholar]
- Chavanis, P.H. Statistical mechanics of 2D turbulence with a prior vorticity distribution. Physica D 2008, 237, 1998–2002. [Google Scholar]
- Chavanis, P.H.; Naso, A.; Dubrulle, B. Relaxation equations for two-dimensional turbulent flows with a prior vorticity distribution. Eur. Phys. J. B 2010, 77, 167–186. [Google Scholar]
- Chavanis, P.H. Dynamical and thermodynamical stability of two-dimensional flows: Variational principles and relaxation equations. Eur. Phys. J. B 2009, 70, 73–105. [Google Scholar]
- Bouchet, F.; Laurie, J.; Zaboronski, O. Langevin Dynamics, Large Deviations and Instantons for the Quasi-Geostrophic Model and Two-Dimensional Euler Equations. J. Stat. Phys. 2014, 156, 1066–1092. [Google Scholar] [Green Version]
- Bouchet, F.; Simonnet, E. Random Changes of Flow Topology in Two-Dimensional and Geophysical Turbulence. Phys. Rev. Lett. 2009, 102, 094504. [Google Scholar]
- Marconi, U.M.B.; Tarazona, P. Dynamic density functional theory of fluids. J. Chem. Phys. 1999, 110, 8032–8044. [Google Scholar]
- Chavanis, P.H. Brownian particles with long- and short-range interactions. Physica A 2011, 390, 1546–1574. [Google Scholar]
- Chavanis, P.H.; Laurençot, P.; Lemou, M. Chapman-Enskog derivation of the generalized Smoluchowski equation. Physica A 2004, 341, 145–164. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chavanis, P.-H. Generalized Stochastic Fokker-Planck Equations. Entropy 2015, 17, 3205-3252. https://doi.org/10.3390/e17053205
Chavanis P-H. Generalized Stochastic Fokker-Planck Equations. Entropy. 2015; 17(5):3205-3252. https://doi.org/10.3390/e17053205
Chicago/Turabian StyleChavanis, Pierre-Henri. 2015. "Generalized Stochastic Fokker-Planck Equations" Entropy 17, no. 5: 3205-3252. https://doi.org/10.3390/e17053205
APA StyleChavanis, P. -H. (2015). Generalized Stochastic Fokker-Planck Equations. Entropy, 17(5), 3205-3252. https://doi.org/10.3390/e17053205