Nonparametric Denoising Methods Based on Contourlet Transform with Sharp Frequency Localization: Application to Low Exposure Time Electron Microscopy Images †
Abstract
:1. Introduction
2. Proposed Denoising Methods for Catalase TEM Images
2.1. Bayesian Denoising Algorithm in the Wavelet Domain, for Multiple Noisy Copies
2.1.1. Bayesian Denoising Algorithm for One Set of Observations
2.1.2. Combining Bayesian Estimator and Averaging
2.2. Bayesian Denoising Algorithm in the Contourlet Domain
- Perform multiscale decomposition of the noisy image in the CT domain, obtain the subbands coefficients of the noisy image in different directions and levels;
- Estimate the denoised coefficients of bandpass subbands based on the Bayesian denoiser using Equation (3);
- After the denoising procedure, the contourlet transform is calculated from the processed subband coefficients, and the recovered image is obtained.
2.3. Bayesian Denoising Algorithm in the Contourlet Transform with Sharp Frequency Localization
3. Test Images Dataset (Catalase)
3.1. Denoising Quality, in the Context of Computational Performance
4. Experimental Results and Discussion
4.1. For One Copy
4.2. For Multiple Noisy Copies
5. Concluding Remarks
Acknowledgments
- †This article is an extended version of our paper published in the 34th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Château Clos Lucé, Parc Leonardo Da Vinci, Amboise, France, 21–26 September 2014.
Author Contributions
Conflicts of Interest
References
- Zuo, J.M. Electron detection characteristics of a slow-scan CCD camera, imaging plates and film, and electron image restoration. Microsc. Res. Tech 2000, 49, 245–268. [Google Scholar]
- Henderson, R. Realizing the potential of electron cryo-microscopy. Q. Rev. Biophys 2004, 37, 3–13. [Google Scholar]
- Miloš, V.; Raimond, B.G.; Lucas, J.V.; Abraham, J.K.; Ivan, L.; Uwe, L.; Hans, R.; Ozan, Ö.; Bernd, R. Image formation modeling in cryo-electron microscopy. J. Struct. Biol 2013, 183, 19–32. [Google Scholar]
- Donoho, D.L; Johnstone, I.M. Ideal spatial adaptation by wavelet shrinkage. Biometrik 1994, 81, 425–455. [Google Scholar]
- Donoho, D.L. De-noising by soft-thresholding. IEEE Trans. Inf. Theory 1995, 41, 613–627. [Google Scholar]
- Do, M.N.; Vetterli, M. The Contourlet Transform: An efficient directional multiresolution image representation. IEEE Trans. Image Process 2005, 14, 2091–2106. [Google Scholar]
- Boubchir, L.; Fadili, J.M.A. Closed-form nonparametric Bayesian estimator in the wavelet domain of images using an approximate α-stable prior. Pattern Recognit. Lett 2006, 27, 1370–1382. [Google Scholar]
- Boudjelal, A.; Messali, Z.; Boubchir, L.; Chetih, N. Nonparametric Bayesian estimation structures in the wavelet domain of multiple noisy image copies. Proceedings of the 6th International Conference on Sciences of Electronic, Technologies of Information and Telecommunications, Sousse, Tunisia, 21–24 March 2012; pp. 495–501.
- Ouahabi, A. Signal and Image Multiresolution Analysis; Wiley-ISTE: Hoboken, NJ, USA, 2012. [Google Scholar]
- Fabrizio, R.; Brani, V. Bayesian Modeling in the Wavelet Domain; Handbook of Statistics 25 Bayesian Thinking—Modeling and Computation; Elsevier: Amsterdam, The Netherlands, 2005; pp. 315–338. [Google Scholar]
- Nikias, C.L.; Shao, M. Signal Processing with Alpha-Stable Distributions and Applications, 1st ed; Adaptive and Learning Systems for Signal Processing, Communications and Control Series; Wiley: New York, NY, USA, 1995. [Google Scholar]
- Lu, Y.; Do, M.N. A new contourlet transform with sharp frequency localization, Proceedings of the 2006 IEEE International Conference on Image Processing, Atlanta, GA, USA, 8–11 October 2006; pp. 1629–1632.
- Sid Ahmed, S.; Messali, Z.; Ouahabi, A.; Trépout, S.; Messaoudi, C.; Marco, S. Bilateral filtering and wavelet based image denoising: Application to electron microscopy images with low electron dose. Int. J. Netw. Secur 2013, 1, 1–12. [Google Scholar]
- Angshul, M.; Arusharka, B. A comparative study in wavelets, curvelets and contourlets as feature sets for pattern recognition. Int. Arab J. Inf. Technol 2009, 6, 47–51. [Google Scholar]
Images | SNRin | SNRout
| ||
---|---|---|---|---|
Bayesian using DWT | Bayesian using CT | Bayesian using CTSD | ||
0.05 s_1 | 9.1166 | 13.9593 | 17.8131 | 19.6782 |
0.05 s_2 | 8.9658 | 13.6485 | 16.7772 | 19.2051 |
0.05 s_3 | 9.1184 | 14.0995 | 16.4769 | 19.0817 |
0.05 s_4 | 9.0222 | 13.8463 | 17.4416 | 19.1799 |
0.05 s_5 | 9.1427 | 14.2458 | 16.5566 | 18.6347 |
0.05 s_6 | 9.0856 | 13.9043 | 17.5439 | 19.9940 |
0.05 s_7 | 8.9427 | 13.7417 | 17.5398 | 20.3357 |
0.05 s_8 | 8.7014 | 13.7578 | 17.4200 | 18.1818 |
0.05 s_9 | 8.8151 | 13.8131 | 16.2238 | 18.5918 |
0.05 s_10 | 9.2293 | 14.5171 | 16.6850 | 19.6981 |
0.05 s_11 | 8.9786 | 14.0618 | 17.8385 | 19.9707 |
0.05 s_12 | 8.8766 | 13.6726 | 18.1250 | 19.2492 |
0.05 s_13 | 8.7797 | 13.7597 | 16.4788 | 18.4656 |
0.05 s_14 | 9.2302 | 13.9938 | 18.1627 | 19.0698 |
0.05 s_15 | 8.7073 | 13.9168 | 17.2837 | 18.4448 |
0.05 s_16 | 8.9424 | 13.9458 | 16.9121 | 21.3077 |
0.05 s_17 | 8.6589 | 13.4699 | 17.4719 | 18.5097 |
0.05 s_18 | 9.2351 | 14.3087 | 16.4817 | 19.8011 |
0.05 s_19 | 8.7326 | 13.4320 | 16.5471 | 18.0423 |
0.05 s_20 | 8.9453 | 13.9619 | 15.8638 | 19.5211 |
Average_0.05 s | 8.961325 | 13.90282 | 17.08216 | 19.24815 |
0.1 s_1 | 15.7499 | 20.0007 | 22.3827 | 23.7175 |
0.1 s_2 | 15.5526 | 19.9711 | 21.8719 | 23.9655 |
0.1 s_3 | 15.9268 | 20.5442 | 22.3254 | 24.4462 |
0.1 s_4 | 15.6543 | 19.6158 | 24.3029 | 24.7552 |
0.1 s_5 | 15.4476 | 19.4643 | 22.4469 | 23.7101 |
0.1 s_6 | 16.2155 | 20.4828 | 24.2061 | 24.9250 |
0.1 s_7 | 14.3256 | 18.3053 | 20.7924 | 22.0617 |
0.1 s_8 | 14.0977 | 18.2095 | 20.6396 | 21.8724 |
0.1 s_9 | 13.0810 | 16.6382 | 18.3037 | 20.4235 |
0.1 s_10 | 15.2419 | 19.3726 | 22.8133 | 24.7107 |
Average_0.1 s | 15.12929 | 19.26045 | 22.00849 | 23.45878 |
0.2 s_1 | 22.9465 | 26.8124 | 29.2039 | 30.6730 |
0.2 s_2 | 22.7931 | 26.6525 | 28.9076 | 30.4631 |
0.2 s_3 | 22.6746 | 26.3368 | 29.0428 | 30.7096 |
0.2 s_4 | 22.8597 | 26.7064 | 29.4987 | 30.5284 |
0.2 s_5 | 22.9655 | 26.9566 | 29.6484 | 30.5413 |
Average_0.2 s | 22.84788 | 26.69294 | 29.26028 | 30.58308 |
0.5 s_1 | 28.9003 | 31.4976 | 33.1765 | 33.7052 |
0.5 s_2 | 28.9398 | 31.6083 | 33.5279 | 33.9979 |
Average_0.5 s | 28.92005 | 31.55295 | 33.3522 | 33.85155 |
1 s | 33.1927 | 35.2226 | 36.0073 | 36.6940 |
Images | The average of SNRin | Number of copies | SNRout
| ||
---|---|---|---|---|---|
Bayesian using DWT | Bayesian using CT | Bayesian using CTSD | |||
0.05 s | 8.961325 | 3 | 22.4353 | 25.6364 | 27.3479 |
5 | 26.4296 | 29.3206 | 30.8367 | ||
7 | 28.7677 | 31.5373 | 32.9777 | ||
9 | 30.4237 | 33.0430 | 34.2913 | ||
11 | 31.7434 | 34.1565 | 35.3560 | ||
15 | 33.3985 | 35.5766 | 36.5513 | ||
17 | 33.8908 | 35.9850 | 36.9173 | ||
20 | 34.7928 | 36.7953 | 37.6634 | ||
0.1 s | 15.12929 | 3 | 28.0105 | 29.7354 | 30.9450 |
5 | 31.5391 | 33.1076 | 33.9182 | ||
7 | 33.8048 | 35.1647 | 35.8558 | ||
10 | 34.7072 | 35.5889 | 36.1114 | ||
0.2 s | 22.84788 | 2 | 31.1815 | 33.2577 | 34.5045 |
3 | 33.7801 | 35.6552 | 38.1932 | ||
5 | 36.7699 | 38.5647 | 39.1394 | ||
0.5 s | 28.92005 | 2 | 34.4354 | 35.8070 | 36.1945 |
© 2015 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, S.S.; Messali, Z.; Ouahabi, A.; Trepout, S.; Messaoudi, C.; Marco, S. Nonparametric Denoising Methods Based on Contourlet Transform with Sharp Frequency Localization: Application to Low Exposure Time Electron Microscopy Images. Entropy 2015, 17, 3461-3478. https://doi.org/10.3390/e17053461
Ahmed SS, Messali Z, Ouahabi A, Trepout S, Messaoudi C, Marco S. Nonparametric Denoising Methods Based on Contourlet Transform with Sharp Frequency Localization: Application to Low Exposure Time Electron Microscopy Images. Entropy. 2015; 17(5):3461-3478. https://doi.org/10.3390/e17053461
Chicago/Turabian StyleAhmed, Soumia Sid, Zoubeida Messali, Abdeldjalil Ouahabi, Sylvain Trepout, Cedric Messaoudi, and Sergio Marco. 2015. "Nonparametric Denoising Methods Based on Contourlet Transform with Sharp Frequency Localization: Application to Low Exposure Time Electron Microscopy Images" Entropy 17, no. 5: 3461-3478. https://doi.org/10.3390/e17053461
APA StyleAhmed, S. S., Messali, Z., Ouahabi, A., Trepout, S., Messaoudi, C., & Marco, S. (2015). Nonparametric Denoising Methods Based on Contourlet Transform with Sharp Frequency Localization: Application to Low Exposure Time Electron Microscopy Images. Entropy, 17(5), 3461-3478. https://doi.org/10.3390/e17053461