Introduction to Supersymmetric Theory of Stochastics
Abstract
:1. Introduction
1.1. Dynamical Long-Range Order
1.2. Topological Supersymmetry of Continuous Time Dynamics
1.3. Relation to Existing Theories
1.4. Models of Interest and the Structure of This Paper
2. Continuous-Time Dynamics and Related Concepts
2.1. Dynamics as Maps
2.2. Differential Forms as Wavefunctions
2.3. Operator Algebra
2.3.1. Lie Derivative
2.3.2. Exterior Derivative
2.3.3. Hodge Dual
2.4. Fermionic Variables
3. Operator Representation
3.1. Stochastic Generalization of Dynamics
3.2. Ito–Stratonovich Dilemma
3.3. Properties of the Stochastic Evolution Operator
3.3.1. Fermion Number Conservation
3.3.2. Completeness
3.3.3. Pseudo-Time-Reversal Symmetry
3.3.4. Topological Supersymmetry
3.3.5. Topological Supersymmetry vs. Supersymmetry
3.3.6. Boson-Fermion Pairing of Eigenstates
3.3.7. Topological Supersymmetry and Pseudo-Supersymmetry
3.3.8. Thermodynamic Equilibrium and Stochastic Poincaré–Bendixson Theorem
3.3.9. Realizable Spectra
3.4. Witten Index
3.5. Dynamical Partition Function
3.6. Topological Supersymmetry Breaking, Chaos, and Dynamical Entropy
4. Path Integral Representation
4.1. Finite-Time Stochastic Evolution Operator
4.2. Interpretations of Stochastic Quantization
4.3. Generalization to Spatially Extended Models
4.4. Weyl–Stratonovich Symmetrization and Martingale
4.5. Generating Functional and Correlators
4.6. One Way to a Unique Ground State
4.7. Response and the Butterfly Effect
5. Classification of Ergodic Stochastic Dynamics
5.1. Transient vs. Ergodic Dynamics
5.2. Unstable Manifolds and Ground States: Langevin SDEs
5.3. Deterministic Models
5.3.1. Integrable Models
5.3.2. Chaotic Models
5.4. Stochastic Models: Two Types of “Border of Chaos”
5.4.1. Low-Temperature Regime and Self-Organized Criticality
5.4.2. High-Temperature Regime
6. Conclusions and Outlook
Acknowledgments
Conflicts of Interest
Abbreviations
DLRO | dynamical long-range order |
DPF | dynamical partition function |
DS | dynamical system |
FP operator | Fokker–Planck operator |
KD | kinematic dynamo |
LRDB | long-range dynamical behavior |
ODE | ordinary differential equation |
SdE | stochastic difference equation |
SDE | stochastic differential equation |
SEO | stochastic evolution operator |
SFE | stochastic flow equation |
STS | supersymmetric theory of stochastics |
TPD | total probability distribution |
Appendix A.
Appendix A.1. Differential vs. Difference Equations: Ito–Stratonovich Dilemma
Appendix A.2. Perturbative Supersymmetric Eigenstates
Appendix A.3. Kinematic Dynamo as an Example of Both Types of Supersymmetry-Breaking Spectra
References
- Aschwanden, M. Self-Organized Criticallity in Astrophysics: Statistics of Nonlinear Processes in the Universe; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Gutenberg, B.; Richter, C.F. Magnitude and energy of earthquakes. Nature 1955, 176, 795. [Google Scholar] [CrossRef]
- Beggs, J.M.; Plenz, D. Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J. Neurosci. 2004, 24, 5216–5229. [Google Scholar] [CrossRef] [PubMed]
- Chialvo, D.R. Emergent complex neural dynamics. Nat. Phys. 2010, 6, 744–750. [Google Scholar] [CrossRef]
- Preis, T.; Schneider, J.J.; Stanley, H.E. Switching processes in financial markets. Proc. Natl. Acad. Sci. USA 2011, 108, 7674–7678. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Kogan, S. Electronic Noise and Fluctuations in Solids; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Dana, S.K.; Roy, P.K.; Kurths, J. (Eds.) Complex Dynamics in Physiological Systems: From Heart to Brain; Springer: Berlin/Heidelberg, Germany, 2009.
- Musha, T.; Mitsuaki, Y. 1/f Fluctuations in Biological Systems. In Proceedings of the 19th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, Chicago, IL, USA, 30 October–2 November 1997; Volume 6, pp. 2692–2697.
- Ruelle, D. Early chaos theory. Phys. Today 2014, 67, 9–10. [Google Scholar] [CrossRef]
- Motter, A.E.; Campbell, D.K. Chaos at fifty. Phys. Today 2013, 66, 27–33. [Google Scholar] [CrossRef]
- Shepelyansky, D. Early chaos theory. Phys. Today 2014, 67, 10. [Google Scholar] [CrossRef]
- Ruelle, D. Turbulence, Strange Attractors, and Chaos; World Scientific: Singapore, 1995. [Google Scholar]
- Davidson, P. Turbulence: An Introduction for Scientists and Engineers; Oxford University Press: New York, NY, USA, 2004. [Google Scholar]
- Lewin, R. Complexity: Living on the Edge of Chaos; University of Chicago Press: Chicago, IL, USA, 1999. [Google Scholar]
- Kauffman, S.A. The Origins of Order: Self-Organization and Selection in Evolution; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Hoyle, R. Pattern Formation: An Introduction to Methods; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Bak, P.; Tang, C.; Wiesenfeld, K. Self-organized criticality: An explanation of the 1/f noise. Phys. Rev. Lett. 1987, 59, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Breuer, H.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Mandt, S.; Sadri, D.; Houck, A.A.; Türeci, H.E. Stochastic differential equations for quantum dynamics of spin-boson networks. New J. Phys. 2015, 17, 053018. [Google Scholar] [CrossRef]
- Tien, D.N. A stochastic Ginzburg–Landau equation with impulsive effects. Physica A 2013, 392, 1962–1971. [Google Scholar] [CrossRef]
- Ringel, M.; Gritsev, V. Dynamical symmetry approach to path integrals of quantum spin systems. Phys. Rev. A 2013, 88, 062105. [Google Scholar] [CrossRef]
- Øksendal, B. Stochastic Differential Equations: An Introduction with Applications; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Kunita, H. Stochastic Flows and Stochastic Differential Equations; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Baxendale, P.H.; Lototsky, S.V. Stochastic Differential Equations: Theory and Applications; World Scientific: Singapore, 2007. [Google Scholar]
- Arnold, L. Random Dynamical Systems; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Ikeda, N.; Watanabe, S. Stochastic Differential Equations and Diffusion Processes; North-Holland: Amsterdam, The Netherlands, 1989. [Google Scholar]
- Crauel, H.; Gundlach, M. Stochastic Dynamics; Springer: New York, NY, USA, 1999. [Google Scholar]
- Kapitaniak, T. Chaos in Systems with Noise; World Scientific: Singapore, 1990. [Google Scholar]
- Le Jan, Y.; Watanabe, S. Stochastic Flows of Diffeomorphisms. In Stochastic Analysis; North-Holland: Amsterdam, The Netherlands, 1984; Volumne 32, pp. 307–332. [Google Scholar]
- Parisi, G.; Sourlas, N. Random magnetic fields, supersymmetry, and negative dimensions. Phys. Rev. Lett. 1979, 43, 744–745. [Google Scholar] [CrossRef]
- Parisi, G.; Sourlas, N. Supersymmetric field theories and stochastic differential equations. Nucl. Phys. B 1982, 206, 321–332. [Google Scholar]
- Cecotti, S.; Girardello, L. Stochastic and parastochastic aspects of supersymmetric functional measures: A new non-perturbative approach to supersymmetry. Ann. Phys. 1983, 145, 81–99. [Google Scholar] [CrossRef]
- Cecotti, S.; Girardello, L. A supersymmetry anomaly and the fermionic string. Nucl. Phys. B 1984, 239, 573–582. [Google Scholar] [CrossRef]
- Drummond, I.T.; Horgan, R.R. Stochastic processes, slaves and supersymmetry. J. Phys. A 2012, 45, 095005. [Google Scholar] [CrossRef]
- Kleinert, H.; Shabanov, S.V. Supersymmetry in stochastic processes with higher-order time derivatives. Phys. Lett. A 1997, 235, 105–112. [Google Scholar] [CrossRef]
- Olemskoi, A.I.; Khomenko, A.V.; Olemskoi, D.A. Field theory of self-organization. Phys. A 2004, 332, 185–206. [Google Scholar] [CrossRef]
- Kurchan, J. Supersymmetry in spin glass dynamics. J. Phys. I France 1992, 2, 1333–1352. [Google Scholar] [CrossRef]
- Dijkgraaf, R.; Orlando, D.; Reffert, S. Relating field theories via stochastic quantization. Nucl. Phys. B 2010, 824, 365–386. [Google Scholar] [CrossRef]
- Gozzi, E. Onsager principle of microscopic reversibility and supersymmetry. Phys. Rev. D 1984, 30, 1218. [Google Scholar] [CrossRef]
- Zinn-Justin, J. Renormalization and stochastic quantization. Nucl. Phys. B 1986, 275, 135–159. [Google Scholar] [CrossRef]
- Nicolai, H. Supersymmetry and functional integration measures. Nucl. Phys. B 1980, 176, 419–428. [Google Scholar] [CrossRef]
- Nicolai, H. On a new characterization of scalar supersymmetric theories. Phys. Lett. B 1980, 89, 341–346. [Google Scholar] [CrossRef]
- Frenkel, E.; Losev, A.; Nekrasov, N. Notes on instantons in topological field theory and beyond. Nucl. Phys. B 2007, 171, 215–230. [Google Scholar] [CrossRef]
- Birmingham, D.; Blau, M.; Rakowski, M.; Thompson, G. Topological field theory. Phys. Rep. 1991, 209, 129–340. [Google Scholar] [CrossRef]
- Labastida, J.M.F. Morse theory interpretation of topological quantum field theories. Commun. Math. Phys. 1989, 123, 641–658. [Google Scholar] [CrossRef]
- Witten, E. Topological quantum field theory. Commun. Math. Phys. 1988, 117, 353–386. [Google Scholar] [CrossRef]
- Witten, E. Topological sigma models. Commun. Math. Phys. 1988, 118, 411–449. [Google Scholar] [CrossRef]
- Witten, E. Supersymmetry and Morse theory. J. Differ. Geom. 1982, 17, 661–692. [Google Scholar]
- Witten, E. Dynamical breaking of supersymmetry. Nucl. Phys. B 1981, 188, 513–554. [Google Scholar] [CrossRef]
- Gozzi, E. Universal Hidden Supersymmetry in Classical Mechanics and Its Local Extension. In Supersymmetry and Quantum Field Theory; Akulov, V.P., Wess, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 166–172. [Google Scholar]
- Gozzi, E.; Reuter, M. Algebraic characterization of ergodicity. Phys. Lett. B 1989, 233, 383–392. [Google Scholar] [CrossRef]
- Gozzi, E.; Reuter, M. Lyapunov exponents, path-integrals and forms. Chaos Solitons Fractals 1994, 4, 1117–1139. [Google Scholar] [CrossRef]
- Deotto, E.; Gozzi, E.; Mauro, D. Hilbert space structure in classical mechanics. I. J. Math. Phys. 2003, 44, 5902–5936. [Google Scholar] [CrossRef]
- Gozzi, E.; Reuter, M. Classical mechanics as a topological field theory. Phys. Lett. B 1990, 240, 137–144. [Google Scholar] [CrossRef]
- Deotto, E.; Gozzi, E. On the “Universal” N = 2 Supersymmetry of Classical Mechanics. Int. J. Mod. Phys. A 2001, 16, 2709–2746. [Google Scholar] [CrossRef]
- Gozzi, E. Stochastic and Non-Stochastic Supersymmetry. Prog. Theor. Phys. Suppl. 1993, 111, 115–150. [Google Scholar] [CrossRef]
- Niemi, A.J.; Pasanen, P. Topological σ-model, Hamiltonian dynamics and loop space Lefschetz number. Phys. Letts. B 1996, 386, 123–130. [Google Scholar] [CrossRef]
- Niemi, A.J. A lower bound for the number of periodic classical trajectories. Phys. Letts. B 1996, 386, 123–130. [Google Scholar] [CrossRef]
- Tailleur, J.; Tänase-Nicola, S.; Kurchan, J. Kramers equation and supersymmetry. J. Stat. Phys. 2006, 122, 557–595. [Google Scholar] [CrossRef]
- Gawedzki, K.; Kupiainen, A. Critical behaviour in a model of stationary flow and supersymmetry breaking. Nucl. Phys. B 1986, 269, 45–53. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Pseudo-supersymmetric quantum mechanics and isospectral pseudo-Hermitian Hamiltonians. Nucl. Phys. B 2002, 640, 419–434. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. J. Math. Phys. 2002, 43, 205–214. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Pseudo-Hermiticity versus PT-symmetry II: A complete characterization of non-Hermitian Hamiltonians with a real spectrum. J. Math. Phys. 2002, 43, 2814–2816. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Pseudo-Hermiticity versus PT-symmetry III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries. J. Math. Phys. 2002, 43, 3944–3951. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Pseudo-Hermitian quantum mechanics with unbounded metric operators. Philos. Trans. R. Soc. A 2013, 371, 20120050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bender, C.; Boettcher, S.; Meisinger, P. PT-symmetric quantum mechanics. J. Math. Phys. 1998, 40, 2201–2229. [Google Scholar] [CrossRef]
- Bender, C.; Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 1998, 80, 5243–5246. [Google Scholar] [CrossRef]
- Fernandez, F.; Guardiola, R.; Ros, J.; Znojil, M. Strong-coupling expansions for the PT-symmetric oscillators V(x)=a(ix)+b(ix)(2)+c(ix)(3). J. Phys. A 1998, 31, 10105–10112. [Google Scholar] [CrossRef]
- Bender, C.; Dunne, G.; Meisinger, P. Complex periodic potentials with real band spectra. Phys. Lett. A 1999, 252, 272–276. [Google Scholar] [CrossRef]
- Mezincescu, G. Some properties of eigenvalues and eigenfunctions of the cubic oscillator with imaginary coupling constant. J. Phys. A 2000, 33, 4911–4916. [Google Scholar] [CrossRef]
- Ovchinnikov, I.V. Self-organized criticality as Witten-type topological field theory with spontaneously broken Becchi–Rouet–Stora–Tyutin symmetry. Phys. Rev. E 2011, 83, 051129. [Google Scholar] [CrossRef] [PubMed]
- Ovchinnikov, I.V. Topological field theory of dynamical systems. Chaos Interdiscip. J. Nonlinear Sci. 2012, 22, 033134. [Google Scholar] [CrossRef] [PubMed]
- Ovchinnikov, I.V. Topological field theory of dynamical systems. II. Chaos Interdiscip. J. Nonlinear Sci. 2013, 23, 013108. [Google Scholar] [CrossRef] [PubMed]
- Ovchinnikov, I.V. Transfer operators and topological field theory. 2013; arXiv:1308.4222. [Google Scholar]
- Ovchinnikov, I.V. Supersymmetric Theory of Stochastics: Demystification of Self-Organized Criticality. In Handbook of Applications of Chaos Theory; Skiadas, C.H., Skiadas, C., Eds.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2016. [Google Scholar]
- Gilmore, R. Topological analysis of chaotic dynamical systems. Rev. Mod. Phys. 1998, 70, 1455–1529. [Google Scholar] [CrossRef]
- Hilborn, R.C. Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Ruelle, D. Dynamical zeta functions and transfer operators. Not. AMS 2002, 49, 887–895. [Google Scholar]
- Intriligator, K.; Seiberg, N. Lectures on Supersymmetry Breaking. Class. Quantum Gravity 2007, 24, S741–S772. [Google Scholar] [CrossRef]
- Chung, D.J.H.; Everett, L.L.; Kane, G.L.; King, S.F.; Lykken, J.; Wang, L.T. The soft supersymmetry-breaking Lagrangian: Theory and applications. Phys. Rep. 2005, 407, 1–203. [Google Scholar] [CrossRef]
- Polettini, M. Generally covariant state-dependent diffusion. J. Stat. Mech. 2013, 2013, P07005. [Google Scholar] [CrossRef]
- Nakahara, M. Geometry, Topology, and Physics; IOP Publishing: Bristol, UK, 1990. [Google Scholar]
- Coddington, E.A.; Levinson, N. Theory of Ordinary Differential Equations; McGraw-Hill: New York, NY, USA, 1955. [Google Scholar]
- Eckmann, J.P.; Ruelle, D. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 1985, 57, 617–656. [Google Scholar] [CrossRef]
- Combescure, M.; Robert, D. Fermionic coherent states. J. Phys. A 2012, 45, 244005. [Google Scholar] [CrossRef]
- Itô, K. Stochastic integral. Proc. Imp. Acad. 1944, 20, 519–524. [Google Scholar] [CrossRef]
- Stratonovich, R. A new representation for stochastic integrals and equations. SIAM J. Contr. 1966, 4, 362–371. [Google Scholar] [CrossRef]
- Kampen, N. Itó versus Stratonovich. J. Stat. Phys. 1981, 24, 175–187. [Google Scholar] [CrossRef]
- Wong, E.; Zakai, M. On the convergence of ordinary integrals to stochastic integrals. Ann. Math. Stat. 1965, 36, 1560–1564. [Google Scholar] [CrossRef]
- Shreve, S.; Chalasani, P.; Jha, S. Stochastic Calculus for Finance; Springer: New York, NY, USA, 2004; Volume 1. [Google Scholar]
- Lau, A.W.C.; Lubensky, T.C. State-dependent diffusion: Thermodynamic consistency and its path integral formulation. Phys. Rev. E 2007, 76, 011123. [Google Scholar] [CrossRef] [PubMed]
- Moon, W.; Wettlaufer, J.S. On the interpretation of Stratonovich calculus. New J. Phys. 2014, 16, 055017. [Google Scholar] [CrossRef]
- West, B.J.; Bulsara, A.R.; Lindenberg, K.; Seshadri, V.; Shuler, K.E. Stochastic processes with non-additive fluctuations: I. Itô and Stratonovich calculus and the effects of correlations. Phys. A 1979, 97, 211–233. [Google Scholar]
- Losev, A. Topological quantum mechanics for physicists. JETP. Lett. 2005, 82, 335–342. [Google Scholar] [CrossRef]
- Borisov, N.V.; Ilinski, K.N. N = 2 supersymmetric quantum mechanics on Riemann surfaces with meromorphic superpotentials. Commun. Math. Phys. 1994, 161, 177–194. [Google Scholar] [CrossRef]
- Teschl, G. Ordinary Differential Equations and Dynamical Systems; American Mathematical Society: Providence, RI, USA, 2012; Volume 140. [Google Scholar]
- Ovchinnikov, I.V.; Ensslin, T.A. Kinematic dynamo, supersymmetry breaking, and chaos. 2015; arXiv:1512.01651. [Google Scholar]
- Manning, A. Topological Entropy and the First Homology Group. In Dynamical Systems; Springer: Berlin/Heidelberg, Germany, 2006; pp. 185–190. [Google Scholar]
- Lecomte, V.; Appert-Rolland, C.; van Wijland, F. Chaotic properties of systems with Markov dynamics. Phys. Rev. Lett. 2005, 95, 010601. [Google Scholar] [CrossRef] [PubMed]
- Gaspard, P. Time-reversed dynamical entropy and irreversibility in Markovian random processes. J. Stat. Phys. 2004, 117, 599–615. [Google Scholar] [CrossRef]
- Muratore-Ginanneschi, P. Path integration over closed loops and Gutzwiller’s trace formula. Phys. Rep. 2003, 383, 299–397. [Google Scholar] [CrossRef]
- Hori, K.; Katz, S.; Klemm, A.; Pandharipande, R.; Thomas, R.; Vafa, C.; Vakil, R.; Zaslow, E. Mirror Symmetry; American Mathematical Society and Clay Mathematics Institute: Cambridge, MA, USA, 2003. [Google Scholar]
- Seinberg, N. Naturalness versus supersymmetric non-renormalization theorems. Phys. Lett. B 1993, 318, 469–475. [Google Scholar] [CrossRef]
- Weinberg, S. Nonrenormalization theorems in nonrenormalizable theories. Phys. Rev. Lett. 1998, 80, 3702–3705. [Google Scholar] [CrossRef]
- Sekimoto, K. Stochastic Energetics; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Gallavotti, G. Fluctuation relation, fluctuation theorem, thermostats and entropy creation in nonequilibrium statistical physics. Comptes Rendus Physique 2007, 8, 486–494. [Google Scholar] [CrossRef]
- Maes, C. The fluctuation theorem as a Gibbs property. J. Stat. Phys. 1999, 95, 367–392. [Google Scholar] [CrossRef]
- Polettini, M.; Esposito, M. Transient fluctuation theorem for the currents and initial equilibrium ensembles. J. Stat. Mech. 2014, 2014, P10033. [Google Scholar] [CrossRef]
- Altaner, B. Foundations of stochastic thermodynamics. 2014; arXiv:1410.3983. [Google Scholar]
- Krause, F.; Raedler, K.H. Mean-Field Magnetohydrodynamics and Dynamo Theory; Elsevier: Amsterdam, The Netherlands, 1980. [Google Scholar]
- Beck, R. Magnetism in the spiral galaxy NGC 6946: Magnetic arms, depolarization rings, dynamo modes, and helical fields. Astron. Astrophys. 2007, 470, 539–556. [Google Scholar] [CrossRef]
- Enßlin, T.A.; Vogt, C. Magnetic turbulence in cool cores of galaxy clusters. Astron. Astrophys. 2006, 453, 447–458. [Google Scholar] [CrossRef]
- Vazza, F.; Brüggen, M.; Gheller, C.; Wang, P. On the amplification of magnetic fields in cosmic filaments and galaxy clusters. Mon. Not. R. Astron. Soc. 2014, 445, 3706–3722. [Google Scholar] [CrossRef]
- Browning, M.K. Simulations of dynamo action in fully convective stars. Astrophys. J. 2008, 676, 1262–1280. [Google Scholar] [CrossRef]
- Kuang, W.; Bloxham, J. An Earth-like numerical dynamo model. Nature 1997, 389, 371–374. [Google Scholar]
- Li, K.; Livermore, P.W.; Jackson, A. An optimal Galerkin scheme to solve the kinematic dynamo eigenvalue problem in a full sphere. J. Comput. Phys. 2010, 229, 8666–8683. [Google Scholar] [CrossRef]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ovchinnikov, I.V. Introduction to Supersymmetric Theory of Stochastics. Entropy 2016, 18, 108. https://doi.org/10.3390/e18040108
Ovchinnikov IV. Introduction to Supersymmetric Theory of Stochastics. Entropy. 2016; 18(4):108. https://doi.org/10.3390/e18040108
Chicago/Turabian StyleOvchinnikov, Igor V. 2016. "Introduction to Supersymmetric Theory of Stochastics" Entropy 18, no. 4: 108. https://doi.org/10.3390/e18040108
APA StyleOvchinnikov, I. V. (2016). Introduction to Supersymmetric Theory of Stochastics. Entropy, 18(4), 108. https://doi.org/10.3390/e18040108