Forecasting Energy Value at Risk Using Multiscale Dependence Based Methodology
Abstract
:1. Introduction
2. Literature Review
2.1. Multiscale Analysis in the Energy Markets
2.2. Copula Model in the Energy Markets
3. A Multiscale Dependence-Based Methodology for Portfolio Value at Risk Estimate
Algorithm 1: Bivariate Empirical Mode Decomposition Algorithm |
|
4. Empirical Studies
Data Description
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yau, S.; Kwon, R.H.; Rogers, J.S.; Wu, D.S. Financial and operational decisions in the electricity sector: Contract portfolio optimization with the conditional value-at-risk criterion. Int. J. Prod. Econ. 2011, 134, 67–77. [Google Scholar] [CrossRef]
- Fagiani, M.; Squartini, S.; Gabrielli, L.; Spinsante, S.; Piazza, F. A review of datasets and load forecasting techniques for smart natural gas and water grids: Analysis and experiments. Neurocomputing 2015, 170, 448–465. [Google Scholar] [CrossRef]
- Cincotti, S.; Gallo, G.; Ponta, L.; Raberto, M. Modeling and forecasting of electricity spot-prices: Computational intelligence vs classical econometrics. AI Commun. 2014, 27, 301–314. [Google Scholar]
- Karandikar, R.G.; Deshpande, N.R.; Khaparde, S.A.; Kulkarni, S.V. Modelling volatility clustering in electricity price return series for forecasting value at risk. Eur. Trans. Electr. Power 2009, 19, 15–38. [Google Scholar] [CrossRef]
- Li, J.; Shi, Q.S.; Liu, G.S. Empirical Research on Financial Risks of Electricity Market in Eastern China. In Proceedings of the International Institute of Applied Statistics Studies Conference (IASS 2009), Qingdao, China, 1–3 July 2009.
- Walls, W.; Zhang, W. Using extreme value theory to model electricity price risk with an application to the Alberta power market. Energy Explor. Exploit. 2005, 23, 375–403. [Google Scholar] [CrossRef]
- Liu, M.; Wu, F.F. Risk Management in a Competitive Electricity Market. Int. J. Electr. Power Energy Syst. 2007, 29, 690–697. [Google Scholar] [CrossRef]
- Korn, A.; Malyuga, R.; Petrosyan, A.; Selin, S.; Trofimenko, S. Market Risk Management at Russian Power Companies: An Analytical Study. Available online: https://www.kpmg.com/RU/en/IssuesAndInsights/ArticlesPublications/Documents/Market-risk-management-at-Russian-power-companies-eng.pdf (accessed on 3 May 2016).
- Chevallier, J. Forecasting the density of returns in crude oil futures markets. Int. J. Glob. Energy Issues 2015, 38, 201–231. [Google Scholar] [CrossRef]
- Barunik, J.; Kocenda, E.; Vacha, L. Volatility Spillovers Across Petroleum Markets. Energy J. 2015, 36, 309–329. [Google Scholar] [CrossRef]
- Lin, B.; Li, J. The spillover effects across natural gas and oil markets: Based on the VEC-MGARCH framework. Appl. Energy 2015, 155, 229–241. [Google Scholar] [CrossRef]
- Youssef, M.; Belkacem, L.; Mokni, K. Value-at-Risk estimation of energy commodities: A long-memory GARCH-EVT approach. Energy Econ. 2015, 51, 99–110. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, C.; Yang, L. Forecasting crude oil market volatility: A Markov switching multifractal volatility approach. Int. J. Forecast. 2016, 32, 1–9. [Google Scholar] [CrossRef]
- Bildirici, M.; Ersin, O. Forecasting volatility in oil prices with a class of nonlinear volatility models: Smooth transition RBF and MLP neural networks augmented GARCH approach. Pet. Sci. 2015, 12, 534–552. [Google Scholar] [CrossRef]
- Alamaniotis, M.; Bargiotas, D.; Bourbakis, N.G.; Tsoukalas, L.H. Genetic Optimal Regression of Relevance Vector Machines for Electricity Pricing Signal Forecasting in Smart Grids. IEEE Trans. Smart Grid 2015, 6, 2997–3005. [Google Scholar] [CrossRef]
- Yu, L.; Wang, Z.; Tang, L. A decomposition–ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting. Appl. Energy 2015, 156, 251–267. [Google Scholar] [CrossRef]
- Yu, L.; Dai, W.; Tang, L. A novel decomposition ensemble model with extended extreme learning machine for crude oil price forecasting. Eng. Appl. Artif. Intell. 2016, 47, 110–121. [Google Scholar] [CrossRef]
- Vacha, L.; Barunik, J. Co-movement of energy commodities revisited: Evidence from wavelet coherence analysis. Energy Econ. 2012, 34, 241–247. [Google Scholar] [CrossRef]
- Ortas, E.; Alvarez, I. The efficacy of the European Union Emissions Trading Scheme: Depicting the co-movement of carbon assets and energy commodities through wavelet decomposition. J. Clean. Prod. 2016, 116, 40–49. [Google Scholar] [CrossRef]
- Jammazi, R. Cross dynamics of oil-stock interactions: A redundant wavelet analysis. Energy 2012, 44, 750–777. [Google Scholar] [CrossRef]
- Rana, M.; Koprinska, I. Forecasting electricity load with advanced wavelet neural networks. Neurocomputing 2016, 182, 118–132. [Google Scholar] [CrossRef]
- Voronin, S.; Partanen, J. Forecasting electricity price and demand using a hybrid approach based on wavelet transform, ARIMA and neural networks. Int. J. Energy Res. 2014, 38, 626–637. [Google Scholar] [CrossRef]
- Shrivastava, N.A.; Panigrahi, B.K. Point and prediction interval estimation for electricity markets with machine learning techniques and wavelet transforms. Neurocomputing 2013, 118, 301–310. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Nabney, I.T. Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models. Energy 2010, 35, 3674–3685. [Google Scholar] [CrossRef]
- Jin, J.; Kim, J. Forecasting Natural Gas Prices Using Wavelets, Time Series, and Artificial Neural Networks. PLoS ONE 2015, 10, e0142064. [Google Scholar] [CrossRef] [PubMed]
- He, K.J.; Yu, L.; Lai, K.K. Crude oil price analysis and forecasting using wavelet decomposed ensemble model. Energy 2012, 46, 564–574. [Google Scholar] [CrossRef]
- Zhu, Q.; He, K.J.; Zou, Y.C.; Lai, K.K. Day-Ahead Crude Oil Price Forecasting Using a Novel Morphological Component Analysis Based Model. Sci. World J. 2014, 2014, 341734. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; He, K.J.; Lai, K.K.; Zou, Y.C. Forecasting Crude Oil Price with Multiscale Denoising Ensemble Model. Math. Probl. Eng. 2014, 2014, 716571. [Google Scholar] [CrossRef]
- He, K.J.; Lai, K.K.; Xiang, G.C. Portfolio Value at Risk Estimate for Crude Oil Markets: A Multivariate Wavelet Denoising Approach. Energies 2012, 5, 1018–1043. [Google Scholar] [CrossRef]
- He, K.J.; Xie, C.; Chen, S.; Lai, K.K. Estimating VaR in crude oil market: A novel multi-scale non-linear ensemble approach incorporating wavelet analysis and neural network. Neurocomputing 2009, 72, 3428–3438. [Google Scholar] [CrossRef]
- He, K.; Lai, K.K.; Yen, J. Value-at-risk estimation of crude oil price using MCA based transient risk modeling approach. Energy Econ. 2011, 33, 903–911. [Google Scholar] [CrossRef]
- Zhang, J.L.; Zhang, Y.J.; Zhang, L. A novel hybrid method for crude oil price forecasting. Energy Econ. 2015, 49, 649–659. [Google Scholar] [CrossRef]
- Zhu, B. A Novel Multiscale Ensemble Carbon Price Prediction Model Integrating Empirical Mode Decomposition, Genetic Algorithm and Artificial Neural Network. Energies 2012, 5, 355–370. [Google Scholar] [CrossRef]
- Yu, L.; Lai, K.K.; Wang, S.; He, K. Oil price forecasting with an EMD-based multiscale neural network learning paradigm. In Computational Science—ICCS 2007; Springer-Verlag: Berlin/Heidelberg, Germany, 2007; pp. 925–932. [Google Scholar]
- Yu, L.; Wang, S.; Lai, K.K. Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm. Energy Econ. 2008, 30, 2623–2635. [Google Scholar] [CrossRef]
- Jaschke, S. Estimation of risk measures in energy portfolios using modern copula techniques. Comput. Stat. Data Anal. 2014, 76, 359–376. [Google Scholar] [CrossRef]
- Delatte, A.-L.; Lopez, C. Commodity and equity markets: Some stylized facts from a copula approach. J. Bank. Financ. 2013, 37, 5346–5356. [Google Scholar] [CrossRef]
- Wu, C.-C.; Chung, H.; Chang, Y.-H. The economic value of co-movement between oil price and exchange rate using copula-based GARCH models. Energy Econ. 2012, 34, 270–282. [Google Scholar] [CrossRef]
- Reboredo, J.C. How do crude oil prices co-move? A copula approach. Energy Econ. 2011, 33, 948–955. [Google Scholar] [CrossRef]
- Chang, K.L. The time-varying and asymmetric dependence between crude oil spot and futures markets: Evidence from the Mixture copula-based ARJI-GARCH model. Econ. Model. 2012, 29, 2298–2309. [Google Scholar] [CrossRef]
- Huang, J.; Xue, Y.; Dong, Z.Y.; Wong, K.P. An Efficient Probabilistic Assessment Method for Electricity Market Risk Management. IEEE Trans. Power Syst. 2012, 27, 1485–1493. [Google Scholar] [CrossRef]
- Fang, Y.; Liu, L.; Liu, J.Z. A dynamic double asymmetric copula generalized autoregressive conditional heteroskedasticity model: Application to China’s and US stock market. J. Appl. Stat. 2014, 42, 327–346. [Google Scholar]
- Siburg, K.F.; Stoimenov, P.; Weiß, G.N.F. Forecasting portfolio-Value-at-Risk with nonparametric lower tail dependence estimates. J. Bank. Financ. 2015, 54, 129–140. [Google Scholar] [CrossRef]
- Ignatieva, K.; Truck, S. Modeling spot price dependence in Australian electricity markets with applications to risk management. Comput. Oper. Res. 2016, 66, 415–433. [Google Scholar] [CrossRef]
- Boubaker, H.; Sghaier, N. Portfolio optimization in the presence of dependent financial returns with long memory: A copula based approach. J. Bank. Financ. 2013, 37, 361–377. [Google Scholar] [CrossRef]
- Wang, X.; Cai, J.L.; He, K.J. EMD Copula based Value at Risk Estimates for Electricity Markets. Proced. Comput. Sci. 2015, 55, 1318–1324. [Google Scholar] [CrossRef]
- Lindstram, E.; Regland, F. Modeling extreme dependence between European electricity markets. Energy Econ. 2012, 34, 899–904. [Google Scholar] [CrossRef]
- Dowd, K. Measuring Market Risk; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Bauwens, L.; Laurent, S.; Rombouts, J.V. Multivariate GARCH models: A survey. J. Appl. Econom. 2006, 21, 79–109. [Google Scholar] [CrossRef]
- Silva, O.C.; Ziegelmann, F.A.; Dueker, M.J. Assessing dependence between financial market indexes using conditional time-varying copulas: Applications to Value at Risk (VaR). Quant. Financ. 2014, 14, 2155–2170. [Google Scholar] [CrossRef]
- Patton, A. Modelling Asymmetric Exchange Rate Dependence. Int. Econ. Rev. 2006, 47, 527–556. [Google Scholar] [CrossRef]
- Zou, H.; Xia, G.; Yang, F.; Wang, H. An investigation and comparison of artificial neural network and time series models for Chinese food grain price forecasting. Neurocomputing 2007, 70, 2913–2923. [Google Scholar] [CrossRef]
- Jarque, C.M.; Bera, A.K. A test for normality of observations and regression residuals. Int. Stat. Rev. 1987, 55, 163–172. [Google Scholar] [CrossRef]
- Broock, W.; Scheinkman, J.A.; Dechert, W.D.; LeBaron, B. A test for independence based on the correlation dimension. Econom. Rev. 1996, 15, 197–235. [Google Scholar] [CrossRef]
Statistics | Mean | Standard Deviation | Skewness | Kurtosis | ||
---|---|---|---|---|---|---|
0.0001 | 0.4015 | −0.4325 | 27.2987 | 0.001 | 0 | |
0.0002 | 0.4389 | −0.1961 | 31.6099 | 0.001 | 0 |
Scale | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
95% | 41.00 | 0.83 | 44.00 | 0.49 | 71.00 | 0.00 | 70.00 | 0.00 | 86.00 | 0.00 | 6.3108 | 6.3500 | 6.2957 | 6.3958 | 6.4041 | |
97.5% | 26.00 | 0.18 | 28.00 | 0.08 | 50.00 | 0.00 | 53.00 | 0.00 | 58.00 | 0.00 | 6.3430 | 6.3789 | 6.3275 | 6.3959 | 6.3997 | |
99% | 14.00 | 0.05 | 16.00 | 0.01 | 31.00 | 0.00 | 32.00 | 0.00 | 48.00 | 0.00 | 6.3718 | 6.4018 | 6.3639 | 6.4138 | 6.4168 | |
Average | 27.00 | 0.35 | 29.33 | 0.19 | 50.67 | 0.00 | 51.67 | 0.00 | 64.00 | 0.00 | 6.3419 | 6.3769 | 6.3290 | 6.4019 | 6.4069 | |
95% | 44.00 | 0.49 | 39.00 | 0.92 | 63.00 | 0.00 | 75.00 | 0.00 | 77.00 | 0.00 | 6.3025 | 6.3366 | 6.3700 | 6.3279 | 6.3397 | |
97.5% | 27.00 | 0.12 | 24.00 | 0.36 | 41.00 | 0.00 | 49.00 | 0.00 | 55.00 | 0.00 | 6.3290 | 6.3657 | 6.3806 | 6.3502 | 6.3515 | |
99% | 14.00 | 0.05 | 14.00 | 0.05 | 28.00 | 0.00 | 23.00 | 0.00 | 36.00 | 0.00 | 6.3547 | 6.3913 | 6.4023 | 6.3840 | 6.3746 | |
Average | 28.33 | 0.22 | 25.67 | 0.44 | 44.00 | 0.00 | 49.00 | 0.00 | 56.00 | 0.00 | 6.3287 | 6.3645 | 6.3843 | 6.3540 | 6.3553 | |
95% | 35.00 | 0.44 | 36.00 | 0.55 | 51.00 | 0.08 | 61.00 | 0.00 | 56.00 | 0.01 | 6.2977 | 6.3210 | 6.3782 | 6.4204 | 6.4400 | |
97.5% | 27.00 | 0.12 | 26.00 | 0.18 | 39.00 | 0.00 | 53.00 | 0.00 | 48.00 | 0.00 | 6.3142 | 6.3504 | 6.3859 | 6.4138 | 6.4344 | |
99% | 20.00 | 0.00 | 16.00 | 0.01 | 29.00 | 0.00 | 38.00 | 0.00 | 38.00 | 0.00 | 6.3311 | 6.3739 | 6.3975 | 6.4151 | 6.4376 | |
Average | 27.33 | 0.19 | 26.00 | 0.25 | 39.67 | 0.03 | 50.67 | 0.00 | 47.33 | 0.00 | 6.3143 | 6.3484 | 6.3872 | 6.4164 | 6.4373 | |
95% | 32.00 | 0.20 | 37.00 | 0.66 | 53.00 | 0.04 | 55.00 | 0.02 | 66.00 | 0.00 | 6.3874 | 6.3371 | 6.3761 | 6.4241 | 6.4641 | |
97.5% | 25.00 | 0.26 | 27.00 | 0.12 | 41.00 | 0.00 | 44.00 | 0.00 | 52.00 | 0.00 | 6.3854 | 6.3575 | 6.3813 | 6.4162 | 6.4384 | |
99% | 16.00 | 0.01 | 18.00 | 0.00 | 31.00 | 0.00 | 31.00 | 0.00 | 43.00 | 0.00 | 6.3899 | 6.3795 | 6.3865 | 6.4219 | 6.4314 | |
Average | 24.33 | 0.16 | 27.33 | 0.26 | 41.67 | 0.01 | 43.33 | 0.01 | 53.67 | 0.00 | 6.3876 | 6.3580 | 6.3813 | 6.4207 | 6.4446 |
Models | N | MSE | ||
---|---|---|---|---|
99% | 7 | 0.1642 | 0.8110 | |
EWMA | 97.5% | 9 | 0 | 0.5863 |
95% | 12 | 0 | 0.43238 | |
Average | 48 | 0.0547 | 0.6070 | |
99% | 4 | 0 | 0.3054 | |
DCC-GARCH | 97.5% | 5 | 0 | 0.2247 |
95% | 7 | 0 | 0.1665 | |
Average | 3.3333 | 0 | 0.2322 | |
99% | 26 | 0.0002 | 0.5934 | |
BEMD-Copula | 97.5% | 38 | 0.0799 | 0.4490 |
95% | 66 | 0.2137 | 0.3452 | |
Average | 43.3333 | 0.0979 | 0.4625 | |
99% | 13 | 0.6261 | 0.7609 | |
BEMD-Copula | 97.5% | 22 | 0.2106 | 0.5740 |
95% | 36 | 0.0026 | 0.4381 | |
Average | 23.6667 | 0.2798 | 0.5910 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, K.; Zha, R.; Chen, Y.; Lai, K.K. Forecasting Energy Value at Risk Using Multiscale Dependence Based Methodology. Entropy 2016, 18, 170. https://doi.org/10.3390/e18050170
He K, Zha R, Chen Y, Lai KK. Forecasting Energy Value at Risk Using Multiscale Dependence Based Methodology. Entropy. 2016; 18(5):170. https://doi.org/10.3390/e18050170
Chicago/Turabian StyleHe, Kaijian, Rui Zha, Yanhui Chen, and Kin Keung Lai. 2016. "Forecasting Energy Value at Risk Using Multiscale Dependence Based Methodology" Entropy 18, no. 5: 170. https://doi.org/10.3390/e18050170
APA StyleHe, K., Zha, R., Chen, Y., & Lai, K. K. (2016). Forecasting Energy Value at Risk Using Multiscale Dependence Based Methodology. Entropy, 18(5), 170. https://doi.org/10.3390/e18050170