A Conjecture Regarding the Extremal Values of Graph Entropy Based on Degree Powers
Abstract
:1. Introduction
2. Preliminaries
3. Results and Discussion
3.1. Proof of Conjecture on Entropy
Method of Lagrange Multipliers
- (a)
- Find all values of and λ such that
- (b)
- Evaluate f at all the points that result from step (a). The largest of these values is the maximum value of f; the smallest is the minimum value of f.
3.2. Bounds on
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mowshowitz, A. Entropy and the complexity of the graphs: I. An index of the relative complexity of a graph. Bull. Math. Biophys. 1968, 30, 175–204. [Google Scholar] [CrossRef] [PubMed]
- Trucco, E. A note on the information content of graphs. Bull. Math. Biophys. 1956, 18, 129–135. [Google Scholar] [CrossRef]
- Dehmer, M.; Mowshowitz, A. A history of graph entropy measures. Inf. Sci. 2011, 181, 57–78. [Google Scholar] [CrossRef]
- Dehmer, M. Information processing in complex networks: Graph entropy and information functionals. Appl. Math. Comput. 2008, 201, 82–94. [Google Scholar] [CrossRef]
- Cao, S.; Dehmer, M.; Shi, Y. Extremality of degree-based graph entropies. Inf. Sci. 2014, 278, 22–33. [Google Scholar] [CrossRef]
- Konstantinova, E.V. On Some Applications of Information Indices in Chemical Graph Theory. In General Theory of Information Transfer and Combinatorics; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Cao, S.; Dehmer, M. Degree-based entropies of networks revisited. Appl. Math. Comput. 2015, 261, 141–147. [Google Scholar] [CrossRef]
- Das, K.C. Maximizing the sum of the squares of the degrees of a graph. Discret. Math. 2004, 285, 57–66. [Google Scholar] [CrossRef]
- Das, K.C.; Xu, K.; Nam, J. Zagreb indices of graphs. Front. Math. China 2015, 10, 567–582. [Google Scholar] [CrossRef]
- Das, K.C. On Comparing Zagreb Indices of Graphs. MATCH Commun. Math. Comput. Chem. 2010, 63, 433–440. [Google Scholar]
- Das, K.C.; Gutman, I.; Zhou, B. New upper bounds on Zagreb indices. J. Math. Chem. 2009, 46, 514–521. [Google Scholar] [CrossRef]
- Xu, K.; Das, K.C.; Balachandran, S. Maximizing the Zagreb Indices of (n, m)-Graphs. MATCH Commun. Math. Comput. Chem. 2014, 72, 641–654. [Google Scholar]
- Bonchev, D.G. Information Theoretic Indices for Characterization of Chemical Structures; Research Studies Press: Chichester, UK, 1983. [Google Scholar]
- Dehmer, M.; Kraus, V. On extremal properties of graph entropies. MATCH Commun. Math. Comput. Chem. 2012, 68, 889–912. [Google Scholar]
- Cioabǎ, S.M. Sums of powers of the degrees of a graph. Discret. Math. 2006, 306, 1959–1964. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Holzinger, A.; Dehmer, M.; Jurisica, I. Knowledge discovery and interactive data mining in Bioinformatics—State-of-the-Art, future challenges and research directions. BMC Bioinform. 2014, 15 (Suppl. S6), I1. [Google Scholar] [CrossRef] [PubMed]
- Holzinger, A. Trends in interactive knowledge discovery for personalized medicine: Cognitive science meets machine learning. IEEE Intell. Inform. Bull. 2014, 15, 6–14. [Google Scholar]
- Mayer, C.; Bachler, M.; Holzinger, A.; Stein, P.K.; Wassertheurer, S. The effect of threshold values and weighting factors on the association between entropy measures and mortality after myocardial infarction in the cardiac arrhythmia suppression trial (CAST). Entropy 2016, 18, 129. [Google Scholar] [CrossRef]
- Mayer, C.; Bachler, M.; Hörtenhuber, M.; Stocker, C.; Holzinger, A.; Wassertheurer, S. Selection of entropy-measure parameters for knowledge discovery in heart rate variability data. BMC Bioinform. 2014, 15 (Suppl. 6), S2. [Google Scholar] [CrossRef] [PubMed]
- Holzinger, A.; Hörtenhuber, M.; Mayer, C.; Bachler, M.; Wassertheurer, S.; Pinho, A.; Koslicki, D. On entropy-based data mining. In Interactive Knowledge Discovery and Data Mining in Biomedical Informatics; Holzinger, A., Jurisica, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 209–226. [Google Scholar]
- Holzinger, A.; Ofner, B.; Stocker, C.; Valdez, A.C.; Schaar, A.K.; Ziefle, M.; Dehmer, M. On graph entropy measures for knowledge discovery from publication network data. In Availability, Reliability, and Security in Information Systems and HCI; Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 354–362. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, K.C.; Dehmer, M. A Conjecture Regarding the Extremal Values of Graph Entropy Based on Degree Powers. Entropy 2016, 18, 183. https://doi.org/10.3390/e18050183
Das KC, Dehmer M. A Conjecture Regarding the Extremal Values of Graph Entropy Based on Degree Powers. Entropy. 2016; 18(5):183. https://doi.org/10.3390/e18050183
Chicago/Turabian StyleDas, Kinkar Chandra, and Matthias Dehmer. 2016. "A Conjecture Regarding the Extremal Values of Graph Entropy Based on Degree Powers" Entropy 18, no. 5: 183. https://doi.org/10.3390/e18050183
APA StyleDas, K. C., & Dehmer, M. (2016). A Conjecture Regarding the Extremal Values of Graph Entropy Based on Degree Powers. Entropy, 18(5), 183. https://doi.org/10.3390/e18050183