Application of Entropy-Based Metrics to Identify Emotional Distress from Electroencephalographic Recordings
Abstract
:1. Introduction
2. Methods
2.1. Database
2.2. Description of Entropy-Based Metrics
- Form vector sequences of size m, , defined by , for . These vectors represent m consecutive x values, starting with the ith point.
- Define the distance between vectors and , , as the absolute maximum difference between their scalar components,
- For a given , count the number of j (, ), denoted as , such that the distance between and is less than or equal to r. Then, for ,
- Define as
- Increase the dimension to and calculate as the number of within r of , where j ranges from 1 to (). Then, is defined as
- Set as:
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Coan, J.A.; Allen, J.J.B. Handbook of Emotion Elicitation and Assessment; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Rukavina, S.; Gruss, S.; Hoffmann, H.; Tan, J.W.; Walter, S.; Traue, H.C. Affective Computing and the Impact of Gender and Age. PLoS ONE 2016, 11, e0150584. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.J.; Lord, K.; Slattery, J.; Grainger, L.; Symonds, P. How feasible is implementation of distress screening by cancer clinicians in routine clinical care? Cancer 2012, 118, 6260–6269. [Google Scholar] [CrossRef] [PubMed]
- Rozanski, A. Behavioral cardiology: Current advances and future directions. J. Am. Coll. Cardiol. 2014, 64, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Tadic, B.; Gligorijevic, V.; Mitrovic, M.; Suvakov, M. Co-Evolutionary Mechanisms of Emotional Bursts in Online Social Dynamics and Networks. Entropy 2013, 15, 5084–5120. [Google Scholar] [CrossRef]
- Chanel, G.; Rebetez, C.; Bétrancourt, M.; Pun, T. Emotion Assessment From Physiological Signals for Adaptation of Game Difficulty. IEEE Trans. Syst. Man Cybernet. Part A 2011, 41, 1052–1063. [Google Scholar] [CrossRef]
- Valenza, G.; Lanata, A.; Scilingo, E.P. The Role of Nonlinear Dynamics in Affective Valence and Arousal Recognition. IEEE Trans. Affect. Comput. 2012, 3, 237–249. [Google Scholar] [CrossRef]
- Ekman, P. An argument for basic emotions. Cognit. Emot. 1992, 6, 169–200. [Google Scholar] [CrossRef]
- Schröder, M.; Cowie, R. Towards emotion-sensitive multimodal interfaces: The challenge of the European Network of Excellence HUMAINE. In Proceedings of the Adapting the Interaction Style to Affective Factors Workshop in Conjunction with User Modeling, Edinburgh, UK, 25 July 2005.
- Russell, J.A. A circumplex model of affect. J. Pers. Soc. Psychol. 1980, 39, 1161–1178. [Google Scholar] [CrossRef]
- Calvo, R.A.; D’Mello, S.K. Affect Detection: An Interdisciplinary Review of Models, Methods, and Their Applications. IEEE Trans. Affect. Comput. 2010, 1, 18–37. [Google Scholar] [CrossRef]
- Kreibig, S.D. Autonomic nervous system activity in emotion: A review. Biol. Psychol. 2010, 84, 394–421. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.A.; Bachorowski, J.A.; Fernandez-Dols, J.M. Facial and vocal expressions of emotion. Annu. Rev. Psychol. 2003, 54, 329–349. [Google Scholar] [CrossRef] [PubMed]
- Jenke, R.; Peer, A.; Buss, M. Feature Extraction and Selection for Emotion Recognition from EEG. IEEE Trans. Affect. Comput. 2014, 5, 327–339. [Google Scholar] [CrossRef]
- Mauss, I.B.; Robinson, M.D. Measures of emotion: A review. Cognit. Emot. 2009, 23, 209–237. [Google Scholar] [CrossRef] [PubMed]
- Daly, I.; Malik, A.; Hwang, F.; Roesch, E.; Weaver, J.; Kirke, A.; Williams, D.; Miranda, E.; Nasuto, S.J. Neural correlates of emotional responses to music: An EEG study. Neurosci. Lett. 2014, 573, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.Y.; Hsieh, S. Classifying different emotional states by means of EEG-based functional connectivity patterns. PLoS ONE 2014, 9, e95415. [Google Scholar] [CrossRef] [PubMed]
- Martini, N.; Menicucci, D.; Sebastiani, L.; Bedini, R.; Pingitore, A.; Vanello, N.; Milanesi, M.; Landini, L.; Gemignani, A. The dynamics of EEG gamma responses to unpleasant visual stimuli: From local activity to functional connectivity. NeuroImage 2012, 60, 922–932. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.W.; Wu, Y.T.; Yu, Y.W.Y.; Chen, M.C.; Chen, T.J. The implication of functional connectivity strength in predicting treatment response of major depressive disorder: A resting EEG study. Psychiatry Res. Neuroimag. 2011, 194, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Fingelkurts, A.A.; Fingelkurts, A.A.; Rytsälä, H.; Suominen, K.; Isometsä, E.; Kähkönen, S. Impaired functional connectivity at EEG alpha and theta frequency bands in major depression. Hum. Brain Mapp. 2007, 28, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Varotto, G.; Fazio, P.; Sebastiano, D.R.; Avanzini, G.; Franceschetti, S.; Panzica, F. Music and emotion: An EEG connectivity study in patients with disorders of consciousness. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), San Diego, CA, USA, 28 August–1 September 2012; pp. 5206–5209.
- Liao, W.; Zhang, Z.; Pan, Z.; Mantini, D.; Ding, J.; Duan, X.; Luo, C.; Lu, G.; Chen, H. Altered functional connectivity and small-world in mesial temporal lobe epilepsy. PLoS ONE 2010, 5, e8525. [Google Scholar] [CrossRef] [PubMed]
- Stam, C.; Jones, B.; Nolte, G.; Breakspear, M.; Scheltens, P. Small-world networks and functional connectivity in Alzheimer’s disease. Cerebr. Cortex 2007, 17, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Micheloyannis, S.; Pachou, E.; Stam, C.J.; Breakspear, M.; Bitsios, P.; Vourkas, M.; Erimaki, S.; Zervakis, M. Small-world networks and disturbed functional connectivity in schizophrenia. Schizophr. Res. 2006, 87, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Kim, M.; Oh, E.; Kim, S.P. A review on the computational methods for emotional state estimation from the human EEG. Comput. Math. Methods Med. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Abásolo, D.; Hornero, R.; Gómez, C.; García, M.; López, M. Analysis of EEG background activity in Alzheimer’s disease patients with Lempel-Ziv complexity and central tendency measure. Med. Eng. Phys. 2006, 28, 315–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Y.; Cai, L.; Wang, J.; Wang, R.; Yu, H.; Cao, Y.; Liu, J. Characterization of complexity in the electroencephalograph activity of Alzheimer’s disease based on fuzzy entropy. Chaos 2015, 25, 083116. [Google Scholar] [CrossRef] [PubMed]
- Labate, D.; La Foresta, F.; Morabito, G.; Palamara, I.; Morabito, F.C. Entropic measures of EEG complexity in alzheimer’s disease through a multivariate multiscale approach. IEEE Sens. J. 2013, 13, 3284–3292. [Google Scholar] [CrossRef]
- Lalonde, F.; Gogtay, N.; Giedd, J.; Vydelingum, N.; Brown, D.; Tran, B.Q.; Hsu, C.; Hsu, M.K.; Cha, J.; Jenkins, J.; et al. Brain order disorder 2nd group report of f-EEG. Proc. SPIE 2014, 9118. [Google Scholar] [CrossRef]
- Xiang, J.; Li, C.; Li, H.; Cao, R.; Wang, B.; Han, X.; Chen, J. The detection of epileptic seizure signals based on fuzzy entropy. J. Neurosci. Methods 2015, 243, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Acharya, U.R.; Sudarshan, V.K.; Adeli, H.; Santhosh, J.; Koh, J.E.W.; Puthankatti, S.D.; Adeli, A. A Novel Depression Diagnosis Index Using Nonlinear Features in EEG Signals. Eur. Neurol. 2015, 74, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Bong, S.Z.; Murugappan, M.; Yaacob, S. Methods and approaches on inferring human emotional stress changes through physiological signals: A review. IJMEI 2013, 5, 152–162. [Google Scholar] [CrossRef]
- Alberdi, A.; Aztiria, A.; Basarab, A. Towards an automatic early stress recognition system for office environments based on multimodal measurements: A review. J. Biomed. Inform. 2016, 59, 49–75. [Google Scholar] [CrossRef] [PubMed]
- Healey, J.; Picard, R.W. Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transp. Syst. 2005, 6, 156–166. [Google Scholar] [CrossRef]
- Skinner, M.J.; Simpson, P.A. Workload issues in military tactical airlift. Int. J. Aviat. Psychol. 2002, 12, 79–93. [Google Scholar] [CrossRef]
- Marrelli, M.; Gentile, S.; Palmieri, F.; Paduano, F.; Tatullo, M. Correlation between Surgeon’s experience, surgery complexity and the alteration of stress related physiological parameters. PLoS ONE 2014, 9, e112444. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, D.; Novais, P.; Pêgo, J.M.; Sousa, N.; Neves, J. Using Mouse Dynamics to Assess Stress During Online Exams. In Proceedings of the Hybrid Artificial Intelligent Systems—10th International Conference, HAIS 2015, Bilbao, Spain, 22–24 June 2015; pp. 345–356.
- Martínez-Rodrigo, A.; Zangróniz, R.; Pastor, J.M.; Fernández-Caballero, A. Arousal Level Classification in the Ageing Adult by Measuring Electrodermal Skin Conductivity. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2015; Volume 9456, pp. 213–223. [Google Scholar]
- Bender, R.E.; Alloy, L.B. Life stress and kindling in bipolar disorder: Review of the evidence and integration with emerging biopsychosocial theories. Clin. Psychol. Rev. 2011, 31, 383–398. [Google Scholar] [CrossRef] [PubMed]
- Pickering, T.G. Mental stress as a causal factor in the development of hypertension and cardiovascular disease. Curr. Hypertens. Rep. 2001, 3, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Mönnikes, H.; Tebbe, J.J.; Hildebrandt, M.; Arck, P.; Osmanoglou, E.; Rose, M.; Klapp, B.; Wiedenmann, B.; Heymann-Mönnikes, I. Role of stress in functional gastrointestinal disorders. Evidence for stress-induced alterations in gastrointestinal motility and sensitivity. Dig. Dis. 2001, 19, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Brzozowski, B.; Mazur-Bialy, A.; Pajdo, R.; Kwiecien, S.; Bilski, J.; Zwolinska-Wcislo, M.; Mach, T.; Brzozowski, T. Mechanisms by which Stress Affects the Experimental and Clinical Inflammatory Bowel Disease (IBD). Role of Brain-Gut Axis. Curr. Neuropharmacol. 2016, 14, 1–9. [Google Scholar] [CrossRef]
- Koelstra, S.; Mühl, C.; Soleymani, M.; Lee, J.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. DEAP: A Database for Emotion Analysis using Physiological Signals. IEEE Trans. Affect. Comput. 2012, 3, 18–31. [Google Scholar] [CrossRef]
- Morris, J.D. Observations SAM: The Self-Assessment Manikin—An efficient cross-cultural measurement of emotional response. J. Advert. Res. 1995, 35, 63–68. [Google Scholar]
- Hosseini, S.A.; Khalilzadeh, M.A.; Changiz, S. Emotional stress recognition system for affective computing based on bio-signals. J. Biol. Syst. 2010, 18, 101–114. [Google Scholar] [CrossRef]
- Bastos Filho, T.F.; Ferreira, A.; Atencio, A.C.; Arjunan, S.P.; Kumar, D. Evaluation of feature extraction techniques in emotional state recognition. In Proceedings of the 4th International Conference on Intelligent Human Computer Interaction (IHCI), Kharagpur, India, 27–29 December 2012; pp. 1–6.
- Pomer-Escher, A.G.; de Souza, M.D.P.; Filho, T.F.B. Methology for analysis of stress level based on asymmetry patterns of alpha rhythms in EEG signals. In Proceedings of the 5th ISSNIP-IEEE Biosignals and Biorobotics Conference: Biosignals and Robotics for Better and Safer Living (BRC), Salvador, Brazil, 26–28 May 2014; pp. 1–5.
- Faust, O.; Bairy, M.G. Nonlinear analysis of physiological signals: A review. J. Mech. Med. Biol. 2012, 12. [Google Scholar] [CrossRef]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [PubMed]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [PubMed]
- Lake, D.E.; Moorman, J.R. Accurate estimation of entropy in very short physiological time series: The problem of atrial fibrillation detection in implanted ventricular devices. Am. J. Physiol. Heart Circ. Physiol. 2011, 300, H319–H325. [Google Scholar] [CrossRef] [PubMed]
- Pincus, S.M. Assessing serial irregularity and its implications for health. Ann. N. Y. Acad. Sci. 2001, 954, 245–267. [Google Scholar] [CrossRef] [PubMed]
- Hornero, R.; Abásolo, D.; Escudero, J.; Gómez, C. Nonlinear analysis of electroencephalogram and magnetoencephalogram recordings in patients with Alzheimer’s disease. Philos. Trans. A Math. Phys. Eng. Sci. 2009, 367, 317–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 2002, 89, 068102. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Liu, C.; Li, K.; Zheng, D.; Liu, C.; Hou, Y. Assessing the complexity of short-term heartbeat interval series by distribution entropy. Med. Biol. Eng. Comput. 2015, 53, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.; Jianhua, H. A K-fold averaging cross-validation procedure. J. Nonparametr. Stat. 2015, 27, 167–179. [Google Scholar] [CrossRef]
- Breiman, L. Classification and Regression Trees; Wadsworth International Group: Belmont, CA, USA, 1984. [Google Scholar]
- Jolliffe, I. Principal Component Analysis; Wiley Online Library: Hoboken, NJ, USA, 2002. [Google Scholar]
- Hatamikia, S.; Nasrabadi, A. Recognition of emotional states induced by music videos based on nonlinear feature extraction and SOM classification. In Proceedings of the 21th Iranian Conference on Biomedical Engineering (ICBME), Tehran, Iran, 26–28 November 2014; pp. 333–337.
- Lu, S.; Chen, X.; Kanters, J.K.; Solomon, I.C.; Chon, K.H. Automatic selection of the threshold value r for approximate entropy. IEEE Trans. Biomed. Eng. 2008, 55, 1966–1972. [Google Scholar] [PubMed]
- Chon, K.; Scully, C.G.; Lu, S. Approximate entropy for all signals. IEEE Eng. Med. Biol. Mag. 2009, 28, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, C.; Shao, P.; Li, L.; Sun, X.; Wang, X.; Liu, F. Comparison of different threshold values r for approximate entropy: Application to investigate the heart rate variability between heart failure and healthy control groups. Physiol. Meas. 2011, 32, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Lang, P.J.; Bradley, M.M.; Cuthbert, B.N. Emotion, motivation, and anxiety: Brain mechanisms and psychophysiology. Biol. Psychiatry 1998, 44, 1248–1263. [Google Scholar] [CrossRef]
- Begić, D.; Hotujac, L.; Jokić-Begić, N. Electroencephalographic comparison of veterans with combat-related post-traumatic stress disorder and healthy subjects. Int. J. Psychophysiol. 2001, 40, 167–172. [Google Scholar] [CrossRef]
- Metzger, L.J.; Paige, S.R.; Carson, M.A.; Lasko, N.B.; Paulus, L.A.; Pitman, R.K.; Orr, S.P. PTSD arousal and depression symptoms associated with increased right-sided parietal EEG asymmetry. J. Abnorm. Psychol. 2004, 113, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, K.; Acharya, U.R.; Alias, F.; Tiboleng, T.; Puthusserypady, S.K. Nonlinear analysis of EEG signals at different mental states. Biomed. Eng. Online 2004, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.; Fan, J.; Wu, B.W.Y.; Zhang, Z.; Chang, C.; Hung, Y.S.; Fung, P.C.W.; Sik, H.H. Entrainment of chaotic activities in brain and heart during MBSR mindfulness training. Neurosci. Lett. 2016, 616, 218–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nitschke, W.H.J.B. The puzzle of regional brain activity in and anxiety: The importance of subtypes and comorbidity. Cognit. Emot. 1998, 12, 421–447. [Google Scholar] [CrossRef]
- Todder, D.; Levine, J.; Abujumah, A.; Mater, M.; Cohen, H.; Kaplan, Z. The quantitative electroencephalogram and the low-resolution electrical tomographic analysis in posttraumatic stress disorder. Clin. EEG Neurosci. 2012, 43, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Dolcos, F.; Cabeza, R. Event-related potentials of emotional memory: Encoding pleasant, unpleasant, and neutral pictures. Cognit. Affect. Behav. Neurosci. 2002, 2, 252–263. [Google Scholar] [CrossRef]
Hemisphere | EEG | Significance | Global Analysis | Subject-Related Analysis | ||||
---|---|---|---|---|---|---|---|---|
(L)eft/(R)ight | Channel | Value, ρ | Se (%) | Sp (%) | Ac (%) | Se (%) | Sp (%) | Ac (%) |
L | 0.006 | 47.72 | 67.16 | 57.89 | 66.84 | 60.58 | 60.31 | |
L | 0.0021 | 59.06 | 61.80 | 60.50 | 60.88 | 63.79 | 60.16 | |
L | 7.11 | 58.46 | 67.80 | 63.35 | 61.94 | 59.10 | 59.30 | |
L | > 0.05 | 60.24 | 42.91 | 51.88 | 53.64 | 63.90 | 55.35 | |
L | 0.0307 | 32.66 | 81.84 | 58.40 | 48.16 | 53.56 | 50.43 | |
L | > 0.05 | 38.17 | 67.42 | 54.30 | 41.79 | 51.77 | 45.00 | |
L | 0.038 | 27.75 | 77.46 | 53.77 | 42.28 | 49.49 | 47.45 | |
L | 7.88 | 56.34 | 61.77 | 59.17 | 67.57 | 67.68 | 64.46 | |
L | > 0.05 | 27.26 | 78.52 | 54.05 | 41.70 | 63.36 | 54.71 | |
L | 1.55 | 47.28 | 78.57 | 63.66 | 68.98 | 68.69 | 65.18 | |
L | 0.0048 | 41.30 | 67.60 | 55.05 | 49.88 | 51.07 | 51.63 | |
L | 0.0003 | 50.26 | 71.71 | 61.49 | 72.24 | 66.30 | 66.35 | |
L | 0.0205 | 25.81 | 83.49 | 55.99 | 49.50 | 45.43 | 50.03 | |
L | 0.0132 | 54.18 | 55.89 | 55.09 | 66.84 | 55.13 | 61.64 | |
L | 0.002 | 49.79 | 71.39 | 61.09 | 66.91 | 60.20 | 60.68 | |
L | 0.0123 | 40.42 | 71.34 | 56.60 | 53.04 | 57.53 | 54.82 | |
R | 0.0008 | 67.10 | 49.41 | 57.83 | 64.27 | 59.16 | 60.52 | |
R | 1.60 | 62.51 | 61.58 | 62.05 | 71.24 | 71.81 | 67.40 | |
R | 0.0023 | 55.32 | 64.20 | 59.93 | 68.31 | 62.25 | 62.68 | |
R | 0.0062 | 31.66 | 78.86 | 56.35 | 52.60 | 56.53 | 55.97 | |
R | 0.0233 | 43.16 | 73.64 | 59.11 | 55.66 | 59.25 | 57.06 | |
R | 0.0325 | 40.30 | 72.06 | 56.91 | 67.81 | 62.81 | 63.09 | |
R | > 0.05 | 54.06 | 62.32 | 58.38 | 59.69 | 52.99 | 55.66 | |
R | 0.001 | 57.28 | 61.14 | 59.25 | 65.04 | 70.46 | 64.85 | |
R | 0.035 | 53.73 | 63.14 | 58.67 | 63.39 | 66.77 | 60.69 | |
R | 0.0003 | 64.59 | 56.03 | 60.11 | 65.40 | 66.47 | 61.62 | |
R | 0.0088 | 48.56 | 62.46 | 55.80 | 66.88 | 65.36 | 63.14 | |
R | 4.25 | 67.24 | 57.09 | 63.71 | 72.97 | 73.71 | 68.54 | |
R | 3.86 | 52.69 | 82.94 | 68.52 | 85.38 | 78.04 | 76.49 | |
R | 0.0002 | 63.10 | 64.04 | 63.59 | 71.83 | 69.26 | 65.91 | |
R | 0.0009 | 53.31 | 64.39 | 59.11 | 60.79 | 56.75 | 59.47 | |
R | > 0.05 | 31.30 | 71.14 | 52.16 | 49.62 | 48.78 | 49.95 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Martínez, B.; Martínez-Rodrigo, A.; Zangróniz Cantabrana, R.; Pastor García, J.M.; Alcaraz, R. Application of Entropy-Based Metrics to Identify Emotional Distress from Electroencephalographic Recordings. Entropy 2016, 18, 221. https://doi.org/10.3390/e18060221
García-Martínez B, Martínez-Rodrigo A, Zangróniz Cantabrana R, Pastor García JM, Alcaraz R. Application of Entropy-Based Metrics to Identify Emotional Distress from Electroencephalographic Recordings. Entropy. 2016; 18(6):221. https://doi.org/10.3390/e18060221
Chicago/Turabian StyleGarcía-Martínez, Beatriz, Arturo Martínez-Rodrigo, Roberto Zangróniz Cantabrana, Jose Manuel Pastor García, and Raúl Alcaraz. 2016. "Application of Entropy-Based Metrics to Identify Emotional Distress from Electroencephalographic Recordings" Entropy 18, no. 6: 221. https://doi.org/10.3390/e18060221
APA StyleGarcía-Martínez, B., Martínez-Rodrigo, A., Zangróniz Cantabrana, R., Pastor García, J. M., & Alcaraz, R. (2016). Application of Entropy-Based Metrics to Identify Emotional Distress from Electroencephalographic Recordings. Entropy, 18(6), 221. https://doi.org/10.3390/e18060221