Gravitational Contribution to the Heat Flux in a Simple Dilute Fluid: An Approach Based on General Relativistic Kinetic Theory to First Order in the Gradients
Abstract
:1. Introduction
2. Basic Formalism: Relativistic Fluids
2.1. Basic Elements of General Relativity and the Schwarzschild Metric
2.2. Boltzmann’s General Relativistic Equation
3. The Field Contribution to
4. Heat Flux Calculation with a Spherically Symmetric Static Metric
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
References
- Tolman, R.C. On the weight of heat and thermal equilibrium in general relativity. Phys. Rev. 1930, 35, 904–924. [Google Scholar] [CrossRef]
- Sandoval-Villalbazo, A.; Garcia-Perciante, A.L.; Brun-Battistini, D. Tolman’s law in linear irreversible thermodynamics: A kinetic theory approach. Phys. Rev. D 2012, 86. [Google Scholar] [CrossRef]
- Kremer, G.M. Relativistic gas in a Schwarzschild metric. J. Stat. Mech. 2013, 4, P04016–P04026. [Google Scholar] [CrossRef]
- Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; John Wiley & Son: New York, NY, USA, 1972. [Google Scholar]
- Wodarzik, U.F. Spherically symmetric heat conduction in general relativity. Phys. Rev. A 1984, 30, 3–7. [Google Scholar] [CrossRef]
- Eckart, C. The Thermodynamics of Irreversible Processes III: Relativistic Theory of the Simple Fluid. Phys. Rev. 1940, 58, 919–930. [Google Scholar] [CrossRef]
- Hiscock, A.; Lindblom, L. Generic instabilities in first order dissipative relativistic fluid theories. Phys. Rev. D 1985, 31, 725–740. [Google Scholar] [CrossRef]
- De Groot, S.R.; van Leeuwen, W.A.; van der Wert, C. Relativistic Kinetic Theory; North Holland Publishing Co.: Amsterdam, The Netherlands, 1980. [Google Scholar]
- Cercignani, C.; Kremer, G.M. The Relativistic Boltzmann Equation: Theory and Applications; Birkhauser Verlag: Basel, Switzerland, 2002. [Google Scholar]
- Chapman, S.; Cowling, T.G. The Mathematical Theory of Non-Uniform Gases, 2nd ed.; Cambridge Mathematical Library: Cambridge, UK, 1953. [Google Scholar]
- Kremer, G.M. The Boltzmann equation in special and general relativity. In Proceedings of the 28th International Symposium on Rarefied Gas Dynamics, Zaragoza, Spain, 9–13 July 2012. [Google Scholar]
- Crothers, S.J. On isotropic coordinates and Einstein’s gravitational field. Prog. Phys. 2006, 3, 7–12. [Google Scholar]
- Rybicki, G.; Lightman, A. Radiative Processes in Astrophysics, 1st ed.; John Wiley and Sons: New York, NY, USA, 1979. [Google Scholar]
- Kolb, E.; Turner, M. The Early Universe, 1st ed.; Addison-Wesley Publishing Company: Reading, MA, USA, 1993. [Google Scholar]
- Jüttner, F. Das Maxwellsche Gesetz der Geschwindigkeitsverteilung der Relativtheorie. Ann. Phys. Chem. 1911, 34, 856–860. [Google Scholar] [CrossRef]
- Cubero, D.; Casado-Pascual, J.; Dunkel, J.; Talkner, P.; Hänggi, P. Thermal Equilibrium and Statistical Thermometers in Special Relativity. Phys. Rev. Lett. 2007, 99. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, P.L.; Gross, E.P.; Krook, M. A Model for Collision Processes in Gases I. Small Amplitude Processes in Charged and Neutral One-Component Systems. Phys. Rev. 1954, 94, 511. [Google Scholar] [CrossRef]
- Courant, R.; Hilbert, D. Methods of Mathematical Physics, 1st ed.; John Wiley and Sons: New York, NY, USA, 1989. [Google Scholar]
- Garcia-Perciante, A.L.; Mendez, A.R. Heat conduction in relativistic neutral gases revisited. Gen. Relativ. Gravit. 2011, 43, 2257–2267. [Google Scholar] [CrossRef]
- Garcia-Perciante, A.L.; Sandoval-Villalbazo, A.; Garcia-Colin, L.S. On the microscopic nature of dissipative effects in special relativistic kinetic theory. J. Non-Equilib. Thermodyn. 2012, 37, 43–61. [Google Scholar] [CrossRef]
- Garcia-Perciante, A.L.; Sandoval-Villalbazo, A.; Garcia-Colin, L.S. Benedicks effect in a relativistic simple fluid. J. Non-Equilib. Thermodyn. 2013, 38, 141–150. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brun-Battistini, D.; Sandoval-Villalbazo, A.; Garcia-Perciante, A.L. Gravitational Contribution to the Heat Flux in a Simple Dilute Fluid: An Approach Based on General Relativistic Kinetic Theory to First Order in the Gradients. Entropy 2017, 19, 537. https://doi.org/10.3390/e19110537
Brun-Battistini D, Sandoval-Villalbazo A, Garcia-Perciante AL. Gravitational Contribution to the Heat Flux in a Simple Dilute Fluid: An Approach Based on General Relativistic Kinetic Theory to First Order in the Gradients. Entropy. 2017; 19(11):537. https://doi.org/10.3390/e19110537
Chicago/Turabian StyleBrun-Battistini, Dominique, Alfredo Sandoval-Villalbazo, and Ana Laura Garcia-Perciante. 2017. "Gravitational Contribution to the Heat Flux in a Simple Dilute Fluid: An Approach Based on General Relativistic Kinetic Theory to First Order in the Gradients" Entropy 19, no. 11: 537. https://doi.org/10.3390/e19110537
APA StyleBrun-Battistini, D., Sandoval-Villalbazo, A., & Garcia-Perciante, A. L. (2017). Gravitational Contribution to the Heat Flux in a Simple Dilute Fluid: An Approach Based on General Relativistic Kinetic Theory to First Order in the Gradients. Entropy, 19(11), 537. https://doi.org/10.3390/e19110537