Second-Law Analysis: A Powerful Tool for Analyzing Computational Fluid Dynamics (CFD) Results
- Which is the ideal process (no entropy generation)?
- Where does entropy generation occur in a non-ideal process?
- Why does entropy generation occur at a certain location and with certain strength?
- How can entropy generation be reduced overall or locally?
Acknowledgments
Conflicts of Interest
References
- Moran, M.J.; Shapiro, H.N.; Boettner, D.D.; Bailey, M.B. Fundamentals of Engineering Thermodynamics, 7th ed.; Wiley: New York, NY, USA, 2010. [Google Scholar]
- Herwig, H. The role of entropy generation in momentum and heat transfer. J. Heat Transf. 2012, 134, 031003. [Google Scholar] [CrossRef]
- Batchelor, G.K. An Introduction to Fluid Dynamics; Cambridge Mathematical Library: Cambridge, UK, 2000. [Google Scholar]
- Incropera, F.; DeWitt, D.; Bergmann, T.; Lavine, A. Fundamentals of Heat and Mass Transfer, 6th ed.; John Wiley & Sons: New York, NY, USA, 2006. [Google Scholar]
- Bejan, A. Entropy Generation through Heat and Fluid Flow; John Wiley & Sons: New York, NY, USA, 1982. [Google Scholar]
- Bejan, A. Entropy Generation Minimization; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Kock, F.; Herwig, H. Local entropy production in turbulent shear flows: A high-Reynolds number model with wall functions. Int. J. Heat Mass Transf. 2004, 47, 2205–2215. [Google Scholar] [CrossRef]
- Jin, Y.; Du, J.; Li, Z.Y.; Zhang, H.W. Second-law analysis of irreversible losses in gas turbines. Entropy 2017, 19, 470. [Google Scholar] [CrossRef]
- Lin, D.; Yuan, X.; Su, X.R. Local Entropy generation in compressible flow through a high pressure turbine with delayed detached eddy simulation. Entropy 2017, 19, 29. [Google Scholar] [CrossRef]
- Wang, H.; Lin, D.; Su, X.R.; Yuan, X. Entropy analysis of the interaction between the corner separation and wakes in a compressor cascade. Entropy 2017, 19, 324. [Google Scholar] [CrossRef]
- Laskowski, R.; Smyk, A.; Rusowicz, A.; Grzebielec, A. Determining the optimum inner diameter of condenser tubes based on thermodynamic objective functions and an economic analysis. Entropy 2016, 18, 444. [Google Scholar] [CrossRef]
- Eger, T.; Bol, T.; Thanu, A.R.; Daróczy, L.; Janiga, G.; Schroth, R.; Thévenin, D. Application of entropy generation to improve heat transfer of heat sinks in electric machines. Entropy 2017, 19, 255. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, H.C.; Yang, X.; Shi, L. Entropy generation analysis and performance evaluation of turbulent forced convective heat transfer to nanofluids. Entropy 2017, 19, 108. [Google Scholar] [CrossRef]
- Torabi, M.; Torabi, M.; Peterson, G.P.B. Entropy generation of double diffusive forced convection in porous channels with thick walls and Soret effect. Entropy 2017, 19, 171. [Google Scholar] [CrossRef]
- Isaacson, L.V.K. Entropy generation rates through the dissipation of ordered regions in Helium boundary-layer flows. Entropy 2017, 19, 278. [Google Scholar] [CrossRef]
- Adesanya, S.O.; Fakoya, M.B. Second law analysis for couple stress fluid flow through a porous medium with constant heat flux. Entropy 2017, 19, 498. [Google Scholar] [CrossRef]
- Adesanya, S.O.; Ogunseye, H.A.; Falade, J.A.; Lebelo, R.S. Thermodynamic analysis for buoyancy-induced couple stress nanofluid flow with constant heat flux. Entropy 2017, 19, 580. [Google Scholar] [CrossRef]
- Wei, Y.K.; Wang, Z.D.; Qian, Y.H. A numerical study on entropy generation in two-dimensional Rayleigh-Bénard convection at different Prandtl number. Entropy 2017, 19, 443. [Google Scholar] [CrossRef]
- Zhou, L.; Zhao, R.; Shi, X.P. An entropy-assisted shielding function in DDES formulation for the SST turbulence model. Entropy 2017, 19, 93. [Google Scholar] [CrossRef]
- Jin, Y.; Herwig, H. Turbulent flow in rough wall channels: Validation of RANS models. Comput. Fluids 2015, 122, 34–46. [Google Scholar] [CrossRef]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y. Second-Law Analysis: A Powerful Tool for Analyzing Computational Fluid Dynamics (CFD) Results. Entropy 2017, 19, 679. https://doi.org/10.3390/e19120679
Jin Y. Second-Law Analysis: A Powerful Tool for Analyzing Computational Fluid Dynamics (CFD) Results. Entropy. 2017; 19(12):679. https://doi.org/10.3390/e19120679
Chicago/Turabian StyleJin, Yan. 2017. "Second-Law Analysis: A Powerful Tool for Analyzing Computational Fluid Dynamics (CFD) Results" Entropy 19, no. 12: 679. https://doi.org/10.3390/e19120679
APA StyleJin, Y. (2017). Second-Law Analysis: A Powerful Tool for Analyzing Computational Fluid Dynamics (CFD) Results. Entropy, 19(12), 679. https://doi.org/10.3390/e19120679