Entropy Analysis for a Nonlinear Fluid with a Nonlinear Heat Flux Vector
Abstract
:1. Introduction
2. The Governing Equations
3. The Constitutive Equations
4. Entropy Analysis
5. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Savage, S.B. The mechanics of rapid granular flows. Adv. Appl. Mech. 1984, 24, 289–366. [Google Scholar]
- Hutter, K.; Rajagopal, K.R. On flows of granular material. Contin. Mech. Thermodyn. 1994, 6, 81–139. [Google Scholar]
- Massoudi, M. Constitutive Modelling of Flowing Granular Materials: A Continuum Approach. In Granular Materials: Fundamentals and Applications; Antony, S.J., Hoyle, W., Ding, Y., Eds.; The Royal Society of Chemistry: Cambridge, UK, 2004; pp. 63–107. [Google Scholar]
- Gudhe, R.; Rajagopal, K.; Massoudi, M. Fully developed flow of granular materials down a heated inclined plane Acta Mechanica. Acta Mech. 1994, 103, 63–78. [Google Scholar]
- Reynolds, O. Experiments showing dilatancy, a property of granular material, possibly connected with gravitation. Proc. R. Inst. G. B. 1886, 11, 354–363. [Google Scholar]
- Boyle, E.J.; Massoudi, M. A theory for granular materials exhibiting normal stress effects based on Enkog’s dense gas theory. Int. J. Eng. Sci. 1990, 28, 1261–1275. [Google Scholar]
- Goodman, M.A.; Cowin, S.C. Two problems in the gravity flow of granular materials. J. Fluid Mech. 1971, 45, 312–339. [Google Scholar]
- Goodman, M.A.; Cowin, S.C. A continuum theory for granular materials. Arch. Ration. Mech. Anal. 1972, 44, 249–266. [Google Scholar]
- Ahmadi, G. A generalized continuum theory for granular materials. Int. J. Non-Linear Mech. 1982, 17, 21–33. [Google Scholar]
- Massoudi, M. A Mixture Theory formulation for hydraulic or pneumatic transport of solid particles. Int. J. Eng. Sci. 2010, 48, 1440–1461. [Google Scholar]
- Jenkins, J.T.; Cowin, S.C. Theories for Flowing Granular Materials. Appl. Mech. Div. ASME 1979, 31, 79. [Google Scholar]
- Rajagopal, K.R.; Massoudi, M. A Method for Measuring Material Moduli of Granular Materials: Flow in an Orthogonal Rheometer; Topical Report DOE/PETC/TR-90/3; USDOE Pittsburgh Energy Technology Center: Pittsburgh, PA, USA, 1990.
- Massoudi, M.; Mehrabadi, M.M. A continuum model for granular materials: Considering dilatancy, and the Mohr-Coulomb criterion. Acta Mech. 2001, 152, 121–138. [Google Scholar]
- Kirwan, A.D., Jr. Second Law constraints on the dynamics of a mixture of two fluids at different temperatures. Entropy 2012, 14, 880–891. [Google Scholar]
- Koutsoyiannis, D. From thermodynamics to hydrology. Entropy 2012, 16, 1287–1314. [Google Scholar]
- Pelkowski, J. On the Clausius-Duhem inequality and maximum entropy production in a simple radiating system. Entropy 2014, 16, 2291–2308. [Google Scholar]
- Reyes, F.V.; Lasanta, A. Hydrodynamics of a granular gas in a heterogeneous environment. Entropy 2017, 19, 536. [Google Scholar]
- Massoudi, M. On the heat flux vector for flowing granular materials, Part 1: Effective thermal conductivity and background. Math. Methods Appl. Sci. 2006, 29, 1585–1598. [Google Scholar]
- Massoudi, M. On the heat flux vector for flowing granular materials, Part 2: Derivation and special cases. Math. Methods Appl. Sci. 2006, 29, 1599–1613. [Google Scholar]
- Yang, H.; Aubry, N.; Massoudi, M. Heat transfer in granular materials: Effects of nonlinear heat conduction and viscous dissipation. Math. Methods Appl. Sci. 2013, 36, 1947–1964. [Google Scholar]
- Liu, I.S. Continuum Mechanics; Springer: Berlin, Germany, 2002. [Google Scholar]
- Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. Transport Phenomena, 2nd ed.; John Wiley and Sons, Inc.: Hoboken, NY, USA, 2006. [Google Scholar]
- Coleman, B.D.; Noll, W. The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 1963, 13, 167–178. [Google Scholar]
- Müller, I.A. On the entropy inequality. Arch. Ration. Mech. Anal. 1967, 26, 118–141. [Google Scholar]
- Dunn, J.E.; Fosdick, R.L. Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade. Arch. Ration. Mech. Anal. 1974, 56, 191–252. [Google Scholar]
- Fosdick, R.L.; Rajagopal, K.R. Anomalous features in the model of “Second order fluids”. Arch. Ration. Mech. Anal. 1979, 70, 145–152. [Google Scholar]
- Dunn, J.E.; Serrin, J. On thermodynamics of interstitial working. Arch. Ration. Mech. Anal. 1985, 88, 95–133. [Google Scholar]
- Collins, I.F. Elastic/plastic models for soils and sands. Int. J. Mech. Sci. 2005, 47, 493–508. [Google Scholar]
- Jaeger, H.M.; Nagel, S.R.; Behringer, R.P. Granular solids, liquids, and gases. Rev. Mod. Phys. 1996, 68, 1259. [Google Scholar]
- De Gennes, P.G. Reflections on the mechanics of granular matter. Phys. A 1998, 261, 267–293. [Google Scholar]
- Aranson, I.S.; Tsimring, L.S. Granular Patterns; Oxford University Presss: New York, NY, USA, 2009. [Google Scholar]
- Mehta, A. (Ed.) Granular Materials; Springer: New York, NY, USA, 1994. [Google Scholar]
- Duran, J. Sands, Powders, and Grains; Springer: New York, NY, USA, 2000. [Google Scholar]
- Ristow, G.H. Pattern Formation in Granular Materials; Springer: Berlin, Germany, 2000. [Google Scholar]
- Christoffersen, J.; Mehrabadi, M.M.; Nemat-Nasser, S. A micromechanical description of granular material behavior. Appl. Mech. Div. ASME 1981, 48, 339. [Google Scholar]
- Kanatani, K.I. A micropolar continuum theory for the flow of granular materials. Int. J. Eng. Sci. 1979, 17, 419. [Google Scholar]
- Oda, M. Initial fabrics and their relations to mechanical properties of granular material. Soils Found. 1972, 12, 17–36. [Google Scholar]
- Mehrabadi, M.M.; Nemat-Nasser, S.; Oda, M. On statistical description of stress and fabric in granular materials. Int. J. Numer. Anal. Methods Geomech. 1982, 6, 95–108. [Google Scholar]
- Hermann, H.J.; Luding, S. Modelling of granular media in the computer. Contin. Mech. Thermodyn. 1998, 10, 189. [Google Scholar]
- Edwards, S.F.; Grinev, D.V. Transmission of stress in granular materials as a problem of statistical mechanics. Phys. A 2001, 302, 162–186. [Google Scholar]
- Ciamarra, M.P.; Coniglio, A.; Nicodemi, M. Thermodynamics and statistical mechanics of dense granular media. Phys. Rev. Lett. 2006, 97, 158001. [Google Scholar]
- Spencer, A.J.M. Theory of Invariants. In Continuum Physics; Part III; Eringen, A.C., Ed.; Academic Press: Cambridge, MA, USA, 1971; Volume 1, pp. 239–353. [Google Scholar]
- Rajagopal, K.R.; Troy, W.C.; Massoudi, M. Existence of solutions to the equations governing the flow of granular materials. Eur. J. Mech. B Fluids 1992, 11, 265–276. [Google Scholar]
- Reiner, M. A mathematical theory of dilatancy. Am. J. Math. 1945, 67, 350–362. [Google Scholar]
- Rivlin, R. The hydrodynamics of non-Newtonian fluids. I. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 1948, 193, 260–281. [Google Scholar]
- Massoudi, M. A generalization of Reiner’s mathematical model for wet sand. Mech. Res. Commun. 2011, 38, 378–381. [Google Scholar]
- Mehrabadi, M.M.; Cowin, S.C.; Massoudi, M. Conservation laws and constitutive relations for density-gradient-dependent viscous fluids. Contin. Mech. Thermodyn. 2005, 17, 183–200. [Google Scholar]
- Truesdell, C.; Noll, W. The Nonlinear Field Theories of Mechanics; Springer: Berlin, Germany, 1992. [Google Scholar]
- Massoudi, M. On the flow of granular materials with variable material properties. Int. J. Non-Linear Mech. 2001, 36, 25–37. [Google Scholar]
- Spencer, A.J.M. Continuum Mechanics; Longman: Harlow, UK, 1980. [Google Scholar]
- Jaric, J.; Golubovic, Z. Fourier’s law of heat conduction in a non-linear fluid. J. Therm. Stress. 1999, 22, 293–303. [Google Scholar]
- Massoudi, M.; Kirwan, A.D., Jr. On Thermomechanics of a Nonlinear Heat Conducting Suspension. Fluids 2016, 1, 19. [Google Scholar]
- Yang, H.; Massoudi, M. Conduction and convection heat transfer in a dense granular suspension. Appl. Math. Comput. 2017. submitted. [Google Scholar]
- Wang, L. Vector-field theory of heat flux in confective heat transfer. Nonlinear Anal. 2001, 47, 5009–5020. [Google Scholar]
- Kirwan, A.D., Jr. On Objectivity, Irreversibility, and Non-Newtonian Fluids. Fluids 2016, 1, 3. [Google Scholar]
- Man, C.S.; Sun, Q.X. On the significance of normal stress effects in the flow of glaciers. J. Glaciol. 1987, 33, 268–273. [Google Scholar]
- Man, C.S. Nonsteady channel flow of ice as a modified second-order fluid with power-law viscosity. Arch. Ration. Mech. Anal. 1992, 119, 35–57. [Google Scholar]
- Massoudi, M.; Vaidya, A. On some generalizations of the second grade fluid model. Nonlinear Anal. Real World Appl. 2008, 9, 1169–1183. [Google Scholar]
- Man, C.S.; Massoudi, M. On the thermodynamics of some generalized second-grade fluids. Contin. Mech. Thermodyn. 2010, 22, 27–46. [Google Scholar]
- Massoudi, M.; Phouc, T.X. Couette-Poiseuille flow of a suspension modeled as a modified third grade fluid. Arch. Appl. Mech. 2016, 86, 921–932. [Google Scholar]
- Fosdick, R.L.; Rajagopal, K.R. Thermodynamics and stability of fluids of third grade. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 1980, 339, 351–377. [Google Scholar]
- Franchi, H.; Straughan, B. Stability and nonexistence results in the generalized theory of a fluid of second grade. J. Math. Anal. Appl. 1993, 180, 122–137. [Google Scholar]
- Galdi, G.P.; Sequeira, A. Further existence results for classical solutions of the equations of a second-grade fluid. Arch. Ration. Mech. Anal. 1994, 128, 297–312. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Massoudi, M.; Kirwan, A.D., Jr. Entropy Analysis for a Nonlinear Fluid with a Nonlinear Heat Flux Vector. Entropy 2017, 19, 689. https://doi.org/10.3390/e19120689
Yang H, Massoudi M, Kirwan AD Jr. Entropy Analysis for a Nonlinear Fluid with a Nonlinear Heat Flux Vector. Entropy. 2017; 19(12):689. https://doi.org/10.3390/e19120689
Chicago/Turabian StyleYang, Hyunjin, Mehrdad Massoudi, and A. D. Kirwan, Jr. 2017. "Entropy Analysis for a Nonlinear Fluid with a Nonlinear Heat Flux Vector" Entropy 19, no. 12: 689. https://doi.org/10.3390/e19120689
APA StyleYang, H., Massoudi, M., & Kirwan, A. D., Jr. (2017). Entropy Analysis for a Nonlinear Fluid with a Nonlinear Heat Flux Vector. Entropy, 19(12), 689. https://doi.org/10.3390/e19120689