1. Introduction
How are life and mind, respectively, characterized, and how are their relations to one another best conceived?
In this paper, we start by examining this question from the perspective of the free energy principle (FEP). The FEP is argued to deliver an overarching rationale for brain functioning; to give a unified theory of perception, cognition, and action (and all other psychological capacities); and to suggest a framework by which to understand the relation between life and mind [
1,
2,
3]. It states that organisms act to maintain themselves in their expected biological and cognitive states, and that they can do so only by minimizing their free energy given that the long-term average of free energy is entropy [
4,
5] (By “state” we mean a state in a system’s state space. One of the states that a system expects to find itself in is “to be alive”. Thus, a system will seek to reduce the probability of finding itself in a non-anticipated state relative to its generative model. In other words, by minimizing free energy, on average and over time, the system will self-organize the parameters of its internal states to occupy a limited number of states, on average and over time ([
6], p. 180)). Hence, to minimize free energy is to reduce disorder, in the sense of uncertainty.
We then argue that there is no singular account of the FEP for thinking about the relation between life and mind (Or, minimally, there is no existing agreement on how best to interpret the properties of variational free energy for thinking about life and mind, and their relationship to one another). These different perspectives on the life-mind relation can be brought into view by considering the answer one would give to the following question: “Are mental phenomena restricted to living systems”?
Some free energy formulations answer this question negatively. We call this picture of the life-mind relation the independence view of life and mind. In the context of the FEP, it comes in at least two formulations, each of which has its own unique implications for thinking about life and mind, and their relation to one another:
The Cognitivist Free Energy Principle [
6,
7,
8].
The Overly Generous Non-Cognitivist Free Energy Principle [
9,
10].
The cognitivist free energy principle (cognitivist FEP) treats the relationship between life and mind as a contingent one. It is sometimes referred to as the self-evidencing brain hypothesis [
7] or simply the predictive mind [
6]. An independence view of this kind might still hold that some cognitive systems are living systems, but it will treat this particular relation as purely contingent, for example by associating minds with computational processes with semantic (i.e., contentful) properties, or by allowing for the possibility that minds could be realized wholly independently from life given the right kind of artificially supporting system. Such minds might be said to be epistemically secluded from the world, comprised of powerful generative models, which cannot be “necessarily wedded to biological organs” ([
8], p. 7).
The non-cognitivist free energy principle (non-cognitivist FEP) takes a very different starting point from the cognitivist FEP. The origins of the FEP were in thermodynamics, where non-equilibrium free energy theorems have been used to explain self-organizing dynamics in systems capable of remaining far from thermodynamic equilibrium [
4]. In this sense the origins of the FEP have nothing intrinsically to do with life and mind, although it is now being directly applied to explain living and cognitive systems [
2,
9,
10,
11]. Overly generous non-cognitivist FEP is the view that all systems that maintain their variables within a limited range of values can be understood as having some form of mentality or proto-mentality given that the FEP casts any system that is able to maintain structural integrity in the face of a fluctuating environment as engaged in predicting its own future states. That is, retaining integrity rests upon processes the function of which is to maximize model evidence—i.e., these processes exhibit self-evidencing dynamics. Yet, this generous view of self-evidencing would appear to lead to some form of panpsychism.
Other free energy formulations answer the question of whether the mind is restricted by life positively. These formulations are part of a more general picture of the life-mind relation we refer to as the dependence view of life and mind. There are different accounts in the literature, and common in all of these is that they subscribe to a much less generous but still non-cognitivist view of the FEP. We dub the possible accounts:
Non-Cognitivist FEP + Evolutionary Latecomer Views of Mind (e.g., [
12])
Non-Cognitivist FEP + Strong Life-Mind Continuity Views ([
13,
14] and
this paper).
Evolutionary latecomer views of mind emphasize discontinuities between mere living systems and cognitive ones, such that the properties of mind can be thought of as complexifications of the properties of life (see [
15] for discussion of such views, yet in a slightly different context). For example, mentality, but not life, requires the existence of sophisticated generative neural machinery that is not present in simple forms of life such as single-celled organisms [
12]. Hence, on this view, it is possible to be alive and yet not (necessarily) cognitive (Despite his defense of an action-oriented representational theory of mind, we place Clark [
12] in the non-cognitivist FEP camp given his advocacy of the complementarity of FEP and predictive processing schemes with work in embodied, extended and enactive approaches to cognitive science. We will have more to say about Clark’s [
12] view in due course).
In this paper, we shall defend non-cognitivist FEP and a strong life-mind continuity view based on recent developments in embodied and enactive cognitive science. It is the classic premises of cognitivism, especially internalism and representationalism, which make straightforward applications of enactive approaches to the FEP problematic [
1,
16]. We are not alone in developing anti-cognitivist formulations of the FEP from the perspective of enactivism. Work by Bruineberg et al. [
13] and Kirchhoff [
14,
17] set the stage. Here is a list of the points on which we agree with Bruineberg et al. [
13]: (a) the Helmholtzian view of perception as unconscious inference is inherent to cognitivist formulations of the FEP; (b) there are good reasons to think that this Helmholtzian view of perceptual inference is incompatible with approximate Bayesian inference under a non-cognitivist formulation of the FEP; and (c) once viewed through the lens of enactivism, the FEP can address how life and mind share the same set of basic organizational properties. The main difference between Bruineberg et al. [
13] and this paper is that while Bruineberg et al. ([
13]; see also [
18]) aim to establish that the function of generative models is to maintain a robust brain-body-niche system (see [
17] for a metaphysical treatment), we directly target a strong life-mind continuity thesis, further developing recent arguments in [
14].
We shall argue that non-cognitivist FEP, and its implications for thinking about the relation between life and mind, can be usefully constrained and augmented by key ideas in recent radical and autopoietic enactive approaches to cognitive science [
14,
17,
19,
20,
21,
22]. Our argument has two steps. The first addresses the nature of
basic minds as selected by evolution for intentional directedness without semantic content [
21]. The second step grounds the concept of basic minds in the concept of basic life cast in terms of autopoiesis and adaptivity [
19,
20]. Consequently, we arrive at a strong view of life-mind continuity, and we avoid the cognitivist position of no-continuity between life and mind, while, at the same time, remaining far removed from the kind of mental bloat associated with overly generous FEP interpretations of the place of mind in the natural world (For other related but different articulations of the strong life-mind continuity thesis, see [
23,
24,
25,
26], especially [
27]).
2. The Free Energy Principle
What is called the free energy principle (FEP) is an imperative for self-organization in open dynamical systems. It specifies that for living systems to maintain their structural and functional integrity they must minimize “free energy” in the context of active inference: they must change their relationship to their niche in order preserve integrity [
4,
10,
14]. The FEP is therefore the claim that all biological systems must actively resist a natural tendency for disorder [
13,
28].
Free energy was classically defined in terms of thermodynamic principles, but here we are only concerned with free energy cast as variational free energy that comes from probability theory and Bayesian statistics given that this is the conception of free energy involved in the FEP. Information theoretically, free energy is an upper bound on surprise (or formally, “surprisal”), where surprise is defined as the difference between an organism’s predictions (or anticipations) about sensory input and the sensory input it actually receives. Thus, surprise is a measure of improbability, and should not be confused with the psychological notion of surprise (though the two sometimes converge). Organisms that succeed in remaining far from terminal phase boundaries (and therefore are able to remain alive), the FEP mandates, “do so by minimizing their tendency to enter into this special kind of surprising (that is, non-anticipated) states” ([
5] p. 1).
The relationship between variational free energy and entropy should be understood in the following way. Free energy is an upper bound on surprise, and the long-term average of surprise is entropy. To see this more clearly, consider that a state can be said to have high surprise if it is deemed unlikely to occur relative to a generative model. The main idea is that organisms become (approximate) models of their local niche given that such systems, on average and over time, distill statistical regularities of their niche and thus come to embody such regularities in their gross-bodily form and internal global dynamics [
10,
11]. Were a state to be consistently high in surprise it would be a state with high entropy (with high statistical improbability). Alternatively, if a system is able to predict the exteroceptive or interoceptive causes of its sensory input, it will be in a state with low entropy, and therefore low surprise. This is simply to say that expected states have a low entropy distribution. Conversely, the higher the average number of observations required to describe the dispersion of states for some random variable, the higher the entropy of that variable’s probability distribution As a result, the FEP states that living systems can maintain themselves within entropic bounds by seeking to minimize their free energy.
Prima facie, at least, what the FEP makes possible is the generation of a deep and underlying unity connecting “processes of adaptation, mind, and life” ([
5], p. 1) cast in terms of the information-theoretic notion of free energy. All this is to say that what enables living systems to survive is the same process that enables such systems to perceive, act, think, and so on. Thus, the FEP gives hope of providing a single framework by which to unify theorizing about life and mind, and it does so by appeal to a single imperative: free energy minimization [
4,
10,
11]. Hence, the FEP provides one with reasons for linking processes of life with processes of mind via what is essentially an uncertainty minimization view of life and mind. However, in the context of the FEP, closer inspection reveals a tension between different conceptions of how best to understand the implications of free energy minimization and the central properties that free energy minimization involves.
2.1. Free Energy and Cognitivist Prediction Error Minimization
Some free energy formulations add what we call a cognitivist constraint, which has implications for how such a view understands the life-mind relation. By cognitivist constraint we mean a constraint about the nature of the information processing in question; that it be thought of as the processing of representations with semantic content. In addition to positing semantic mental representations, cognitivist FEP also conceives of free energy minimization through a particular epistemological lens; namely that the free energy theorem leads to global skepticism with respect to the mind-world relation ([
8], p. 2). Although there is much to be said about the epistemological implications of cognitivist FEP, we shall restrict our attention to the issue of semantic mental representations.
Cognitivist FEP is usually framed almost exclusively within a particular understanding of approximate Bayesian inference cast in terms of “prediction error minimization” (PEM). Whereas the FEP takes its starting point in issues to do with self-organization in thermodynamic, non-equilibrium systems, and thus can be shown to apply to a wide range of different phenomena, prediction error minimization schemes have been more directly associated with brain functioning ([
6]; see [
1] for further references). Here the brain is depicted as a hierarchical generative model for minimizing a prediction error quantity reflecting the probability of sensorimotor input relative to an internal, knowledge-based, model. It is this knowledge-based formulation that adds the cognitivist assumption. We will unpack what we mean by this, since the FEP is generally taken to imply that internal states engage in Bayesian inference in which internal—comprising a system’s generative model—as well as active states can be modeled as minimizing free energy inferentially [
29]. So, it is not the issue of inference or the possession of a generative model as such that exemplifies the cognitivist assumption. Instead, it is the particular properties associated with such inferential processes that highlight a particular, cognitivist take on free energy minimization.
Cognitivist FEP gives special importance to internal, information processing with semantic (i.e., contentful) properties. This is a semantic view of the computational theory of mind, where internal representations are cast in terms of top-down probabilistic inferences on probability density distributions. Such a view of brain functioning is usually couched in the language of folk-psychology (the language of beliefs, desires, attention, and reasons), and proceeds from the premise that information processing with semantic properties is what constitutes cognition. The common reason for positing internal states with semantic properties is that unless there are such states they would not be cognitive, because purely physical systems would not be able to represent the world beyond their internal states. Since minds are generally assumed to manipulate representations and since most naturally occurring systems are not assumed to manipulate such things, it follows that cognitivist FEP draws a hard line between mental and non-mental systems. For example, Hohwy [
3,
6,
7] draws such cognitivist results from the FEP (but see also [
30]).
Work of this particular kind motivates what we referred to as an independence view of life and mind, placing the origins of mind later than those of life and treating the relation between the living and the mental in a contingent fashion. However, given its functionalist framework, this approach threatens to introduce a hard to explain gap between more complex and cognitive forms of life and the rest of the living realm, thus denying the possibility of any kind of life-mind continuity altogether. On such a cognitivist view of mind only some living systems have evolved the neural machinery capable of realizing information processing involving semantic properties.
2.2. Non-Cognitivist Free Energy Minimization
Other less cognitivist or even anti-cognitivist variants draw conclusions to the effect that one can endorse the FEP without endorsing a cognitivist reading of approximate Bayesian inference in the context of prediction error minimization. Non-cognitivist FEP casts free energy minimization in physical systems in terms of Shannon “entropy” in information theory [
5]. Hence, it is possible to posit the FEP as the unifying principle of life and mind and, at the same time, deny that the most basic features of life and mind involve probabilistic inferences with semantic content, even if the basis of life and mind involves probabilistic inference (see also [
10,
14,
29]).
On some generous articulations of this view, free energy minimization is argued to occur not only in biological systems but to also take place in nonliving systems ranging from synchronization of clocks to the primordial soup and social networks [
9,
10]. Unlike cognitivist FEP, for which prediction error minimization is an evolutionary function of brains becoming hierarchical generative models, these “generous” views would seem to undermine the continuity and unity of life and mind. The reason for this is that their posited principle by which to unify life and mind applies to systems that are arguably non-living and non-mental. Yet, this presents some problems. The first is that if mentality is realized in processes of free energy minimization, and if free energy minimization applies to everything from human beings, pendulum clocks, to the primordial soup, then mentality may turn out to be nearly everywhere. Whether panpsychism of this form is correct is difficult to assess. But, without a clear way of separating mentality from non-mentality, or life from non-life, any overly generous version of the FEP becomes too general, thus losing its explanatory value for addressing the relationship between life and mind.
In the next two sections, we turn to develop these two different formulations of the FEP for the life-mind relation, while considering the key assumptions made in both accounts to drive them toward their respective conclusions.
5. Restricting Non-Cognitivist FEP with REC: An Evolutionary Latecomer View of the Mind
Our strategy now will be to show that the implications for the overly generous view of non-cognitivist FEP can be restricted. Instead of placing mentality outside the domain of life, or even thinking that everything that exists is life-like and therefore mind-like, we shall argue that such implications can be usefully constrained by work in radically embodied enactivism (REC) in naturalistic philosophy of cognition [
21,
48]. This restriction will help us in taking first steps toward developing a view of non-cognitivist FEP that avoids any kind of appeal to panpsychism, and where the presence of mental semantic content (i.e., internal states with correctness conditions) marks a transition within the realm of the mental—as opposed to highlighting a path from the non-mental to the mental.
The main commitments of REC can be articulated in two basic tenets. The first is a denial of the “usual” view in the cognitive sciences and its philosophy; namely, that cognition, in some fundamental sense, involves contentful mental representation. That is, according to REC, “the vast sea of what humans [and other organisms] do and experience is best understood by appealing to dynamically unfolding, situated embodied interactions and engagements with worldly offerings” ([
48], p. 1). The second is the claim that these kinds of basic cognitive activities are realized in an organism’s world-engaging, bodily activity [
21]. We now turn to highlight two points of convergence between REC and non-cognitivist FEP.
First, they both emphasize co-dependence between the internal and external. Recall that the FEP casts the biological system as a model of its econiche, and adds to this that the econiche is a model of the biological system. For example, the spider’s morphology, possibility for action, and so on, are reflective of its niche, while the web and its wider embedding environment reflect the kind of organism that inhabits it. To be clear, the FEP does posit a separation of internal and external states—the Markov blanket implies such a separation [
28]. However, unlike cognitivist FEP, it does not follow that any such separation is indicative of an
epistemic separation. So, the mere existence of a Markov blanket does not entail that the internal states of an organism must represent states beyond the blanket in virtue of constructing internal states with semantic content about those external states. Rather, it suggests in a similar sense of the enactivist claim that “the organism and environment are bound together in a reciprocal specification and selection” ([
49], p. 174; quoted in [
32], p. 289). Allen and Friston emphasize this mutuality between the internal and external, as they say: “The point is that the boundary itself is constituted by ergodic dynamical interchange between ‘internal’ and ‘external’, rather than a cognitivist performance of internal processing” ([
28], p. 16). REC casts this mutuality between the internal and the external in the form of covariance, which is an expression of how two or more variables change (or do not change) together. Covariance is formally equivalent to the emergence of generalized synchrony that results from active inference—a corollary of the FEP (see [
47])—and expresses a dynamic coupling of two or more random dynamical systems. In this sense, both REC and the FEP formulate, from basic principles, why one should expect shrinkage in entropy given generalized synchrony or covariance in agent-environment couplings. Akin to active inference in the non-cognitivist FEP, REC understands the assembly and orchestration of such dynamic couplings to be a result of embodied activity.
Second, the non-cognitivist FEP and REC conceive of the kind of information available to a biological organism to be of the Shannon variety. However, where the FEP assumes this kind of information to provide an account of self-organization in biological systems [
5], REC draws an additional implication that is intended to raise a serious problem for all cognitivist theories of mind, including cognitivist FEP [
21]. Cognitivist FEP assumes that any kind of intelligent interaction with the world demands semantic content. Yet, this assumption runs afoul against what Hutto and Myin [
21] dub the
hard problem of content. As they say: “positing informational content is incompatible with explanatory naturalism. The root trouble is that Covariance doesn’t Constitute Content” ([
21], p. xv). The driving idea is that semantic content does not exist independently of certain socio-cultural practices. Hence, semantic content is not an inherent property of biological systems and therefore not of life ([
21], p. xv).
We do not comment on the relation between content and social practices (but see [
50]). Instead we shall hone in on the following implication: assuming that information-as-covariance cannot give rise to information-as-content, and assuming that responding adaptively to information-as-covariance is an essential property of living and cognitive systems, then mentality is not in its most basic forms a matter of processing any kind of content. It is precisely for this reason that we argued that cognitivist FEP leads to a no-continuity or independence position with respect to the life-mind relation. We based this claim on the observation that cognitivist FEP cannot help itself to the kind of information at the base of the FEP as it applies to self-organization in biological systems, namely information-as-covariance, to account for processes involving semantic information, and that this thereby forces it to exclude most processes in biology from the domain of the mental.
REC goes further than just problematizing cognitivist theories of mind. It develops a positive picture of non-contentful cognitive activity. According to REC, if one denies that any kind of organismic interaction with the world must, necessarily, involve content, it does not follow that this kind of interaction is, necessarily, non-mental. On this view, it is possible for organisms to be
intentionally directed—to be active, involved in world-directed engagements, and to be informationally responsive—without directedness of this kind being mediated by internal states with semantic content. As Hutto and Myin say: “The simplest life forms are capable of an intentionally directed responding” ([
21], p. x), but this responding is not a matter of interpretation, understanding, or any other kind of sophisticated representational activity.
REC develops its account of non-contentful intentional directedness via a modified version of teleofunctionalism. Simply put, teleofunctionalism is the view that what makes something a mental activity has to do with the function it serves for an organism. The notion of function is cast in terms of proper (biological) functions, and such functions are commonly understood in light of the evolutionary and/or historical conditions under which the respective functions were selected for and/or acquired. Hence, teleofunctionalism explains why an organism has certain mental and biological capacities by appealing to the kind of operations that such functions were selected for in order to increase the probability of surviving and striving.
Many teleofunctionalist are representationalists about mentality. REC rejects this representational commitment of teleofunctionalism. According to Hutto and Myin [
21], the intentional directedness of basic forms of cognitive activity—e.g., a frog flicking its tongue to catch a fly—are constituted by their natural history of selection. We made the same point as we discussed chemotaxis in single-celled organisms above. This implies that intentional directedness has a normative dimension. An intentionally directed form of activity (of the non-semantic kind) “aims at engendering certain types of organismic responses to certain things (or types of things) and not others” ([
51], p. 142). A nice outcome of REC is that it implies a view of mind within which a transition from contentless to contentful activities does not mark a transition from no-mind to mind. REC is thus a transformative theory of mind within the mental realm.
Not all naturally occurring systems satisfy REC’s condition for mentality. That is, not all things that exist exhibit intentional directedness. A thermometer, for example, does not. This is not because such a device lacks systemic functions of the kind that are defined by the role they play for the device. According to REC, such machinery lacks the kind of natural selection history associated with proper biological functions, which is required for a system to exhibit intentional directedness. Assuming that REC’s proposal is along the right track, developing non-cognitivist FEP under the auspices of REC’s teleofunctionalism would thus imply the following important constraint: that only a subset of free energy minimizing systems are intentionally directed at certain features of their local environment, and therefore only a subset of such systems are mental.
This issue requires a lot more discussion than we shall attempt here. Nonetheless, the distance between non-cognitivist versions of the FEP and REC is not very large—at least not once an appeal to a history of selection is recognized. Thus we read: “according to RPP [i.e., radical predictive processing based on the free energy principle] prediction error unfolds not only at ontogenetic but also phylogenetic timescales; if the brain (and body) constitute a generative model, then those [generative models] best suited to their environmental niche will be selected by evolution” ([
28], p. 9). This is revealing. Allen and Friston [
28] here recognize the need to develop a view of generative models, dynamic coupling, and bodily activity along the lines suggested by REC. By recognizing this overlap between non-cognitivist FEP and REC, we thus arrive at the idea that it is possible to develop a non-semantic view of free energy minimizing organisms, and to do so in a way that does not lead to unconstrained mental bloat.
Nevertheless, we will now argue that REC stops short—in the sense of undercutting—a strong version of the life-mind continuity thesis (Note that stopping short of a strong life-mind continuity thesis does not entail that REC faces a fatal dilemma when having to account for the origins of content in naturalistic terms (see [
52] for discussion)). By extension, if the non-cognitivist FEP were to be developed within the confines of REC, it too will stop short of arriving at such a strongly unifying view of life and mind. The reason for this is that once REC is added to the FEP, this addition results in an evolutionary latecomer view of mind. REC places the origins of life prior to the emergence of mind, given its adoption of teleofunctionalism. It follows that REC can be characterized as accepting the following three claims: first, that there is life but no cognition; second, that there is life and that life and mind converge when living systems become capable of non-contentful forms of intentional directedness; and finally, that certain kinds of living systems (human beings, for example) are able to engage in cognitive activity with semantic content (such a writing and performing mathematics). We do not deal with this last implication of REC. Instead we focus and have focused on the second claim, which is the claim that for REC organisms come to exhibit mentality—defined as intentional directed actions—given a selection history. Thus, if added to the FEP, REC narrows the scope of non-cognitivist FEP, given that this appeal to a history of selection would then imply that the very first life forms do not have mental properties given that such life forms would not (at least not yet) have a history of natural selection.
We take issue with this view of the life-mind relation that REC entails, especially since it is somewhat unclear what explanatory work the appeal to selection is doing. Consider, e.g., when the first living system begins to divide. This process results in a number of clones of the first individual system. Yet, given environmental fluctuations, not all clones are able to survive. This raises a question: Have the survivors been “naturally selected”? If affirmative, then the survivors have intentional directedness, and the others do not. However, it is likely the case that there is no notable functional difference between the original individual and any of its clones—independent of them surviving or dying. The implication of this would thus be that physiologically identical organisms could differ in terms of mentality, raising a philosophical worry similar to the one evoked by the “swamp man” thought experiment or the notion of philosophical (free energetic) zombies.
Furthermore, the appeal to “selection” raises additional issues. For example, at which point can we say that a function was “selected”? Is it the moment when the function for the very first time contributes to an organism’s relatively higher rates of reproduction compared to its conspecifics? Or does it require several generations of individuals with above average fitness? And how can this particular function’s contribution to fitness be non-trivially disentangled from the myriad of other contributing factors? To be sure, there is no doubt that over generations natural selection can change the particular way in which organisms are intentionally directed to their environment, but it is not clear whether this evolutionary process should be taken as constituting this very intentional directedness as such (and hence, basic mentality) in the first place.
6. From REC to AE and Non-Cognitivist FEP: Strong Life-Mind Continuity
We finally suggest a way by which to positively rehabilitate the above problem, and we do this by showing that non-cognitivist FEP is also in line with autopoietic enactivism, enabling us to weave the origins of life together with the origins of mind (This account is a further development of the line of argument pursued in [
14]).
REC assumes as its starting point that there is a population of individuals that can be shaped by the forces of natural selection. However, what precisely is an individual? (We are not in a position to discuss this in depth here—a task for another occasion. However, for an initial detailed discussion see [
53] and the rest of the papers in this special issue in
Biology and Philosophy). If this concept is too broad, then it is hard to constrain the notion of intentional directedness appropriately, since many kinds of systems undergo histories of some kind of selection with regard to their functioning, like a thermostat. Moreover, it is undeniable that the thermostat’s functioning can be described normatively, namely in terms of whether it correctly regulates temperature or not. However, its designers and users specify the conditions of “correctness” externally, and therefore its normativity is only a derived kind of normativity. This is not so for the case of living systems. For example, our bodies are also continuously regulating their temperature so as to maintain it within specific boundaries. According to the FEP, this is achieved by free energy minimization, on average and over time. This function is also subject to conditions of success and failure, but here the conditions are intrinsic to the body rather than externally defined for the simple reason that they are determined by a range of viability, which ultimately is a question of existence, of life and death [
28].
To be fair, even a malfunctioning thermostat may eventually disintegrate from overheating. However, this is not sufficient to attribute to it an intrinsic form of normativity. The key difference is that our body, or any living system for that matter, and in contrast to the thermostat, is a physically self-producing system (autopoiesis). Living is a process that maintains itself under far-from-thermodynamic-equilibrium conditions by investing work into preventing its own disintegration. In this manner it must define a boundary between what belongs to itself and what belongs to its environment. This boundary defines it as an autonomous individual. According to non-cognitivist FEP, such a system is an adaptive system capable of active inference with a Markov blanket, where the Markov blanket does not entail anything like an epistemic boundary demarcating mind from world. Whereas the mode of being of a thermostat is characterized by passive persistence, an organism is characterized by active existence (or, active inference). Additionally, because an organism’s being is its own doing, its existence as an individual is inherently precarious, and yet living beings generally do all they can to maintain their way of life against all odds. That is, despite the possibility of simply letting themselves to succumb to the forces of decay and disintegration, they consistently regulate their boundaries to avoid this fate. In other words, living beings do not simply passively undergo perturbations like non-living systems, they respond selectively and the success of this response is normatively linked to the preservation of their way of life.
So, autopoietic enactivism (AE) provides us with the beginnings of an account of how the origin of life is also the origin of autonomous individuality and of intrinsic normativity (the origins of systems maintaining the internal states of their Markov blankets via active inference). However, at first this normativity is not specific to any particular function but rather concerns the individual as a whole: all activity that does not kill the individual has a positive value for the living system. Activity that kills the individual would have a negative value except that it can no longer be so for the system (which is gone). In order to be able to function in a more discerning manner it is necessary for the living system to be able to respond in a differential manner and particularly to detect and avoid potentially lethal interactions before they turn out to be lethal. It is unlikely that this kind of complexity can spontaneously emerge at the origin of life. Instead it requires a history of selection, conceived of in general terms as the outcome of interaction, development, and evolution. In other words, here is where AE connects with the concerns of REC and intentional directedness enters the picture as a way to adaptively respond to relevant features of the inner and outer milieu of the organism. While AE helps REC to appropriately constrain its appeal to selection history, REC in return can help AE to bridge the “cognitive gap” [
26] between basic minds and non-basic minds.
Approaching intentional directedness in this manner has the advantage that it arrives in the context of an autonomous individual that is already actively distinguished from, as well as related to, what is other (its environment), and whose activity is already intrinsically characterized by a basic form of holistic normativity. Additionally, there is no need to worry about the mental status of artifacts with artificially selected functions, since they lack the criteria of basic life (autopoiesis and adaptivity, see [
54]). Intentional directedness is, in this view, effectively a refinement and elaboration of a basic existential profile by means of selective history. The conditions of what REC considers a basic mind, namely an autonomous individual having intrinsic normativity, would already be in place. If so, then we may say that basic mind and basic life arose together at the origin of life, a momentous event, which then should be reconceived of as the origin of life-and-mind—as the origins of organisms with Markov blankets capable of maintaining their own internal states (or processes) through active inference (In this paper we have taken steps towards developing an approach to the strong life-mind continuity thesis that can bring together key insights in the free energy principle with the latest work in enactive cognitive science. However this task is far from finished. We suspect that future work on this project will seek to evaluate the FEP not only in relation to the REC and AE frameworks but also in terms of other accounts of predictive and anticipatory dynamics. For work already started in this direction, see [
55,
56,
57]).