Anatomy of a Spin: The Information-Theoretic Structure of Classical Spin Systems
Abstract
:1. Introduction
2. Spin Entropies
3. Decomposing a Spin’s Thermodynamic Entropy
4. Results
4.1. 1D Ising Model
4.2. Bethe Lattice Ising Model
4.3. 2D Ising Model
5. Discussion
5.1. Motif Entropies
5.2. Actively Storing Information versus Communicating It
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Bethe Lattice Spin-Neighborhood Probabilities
References
- Antonov, V.N.; Bekenov, L.V.; Yaresko, A.N. Electronic structure of strongly correlated systems. Adv. Condens. Matter Phys. 2011, 2011, 298928. [Google Scholar] [CrossRef]
- Mantegna, R.N.; Stanley, H.E. Introduction to Econophysics: Correlations and Complexity in Finance; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Raiesdana, S.; Hashemi Golpayegani, M.R.; Nasrabadi, A.M. Complexity evolution in epileptic seizure. In Proceedings of the IEEE 30th Annual International Conference of the Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 4110–4113. [Google Scholar]
- Mäki-Marttunen, V.; Cortes, J.M.; Villarreal, M.F.; Chialvo, D.R. Disruption of transfer entropy and inter-hemispheric brain functional connectivity in patients with disorder of consciousness. BMC Neurosci. 2013, 14 (Suppl. 1), 83. [Google Scholar] [CrossRef]
- Couzin, I. Collective minds. Nature 2007, 445, 715. [Google Scholar] [CrossRef] [PubMed]
- Barnett, L.; Lizier, J.T.; Harré, M.; Seth, A.K.; Bossomaier, T. Information flow in a kinetic Ising model peaks in the disordered phase. Phys. Rev. Lett. 2013, 111, 177203. [Google Scholar] [CrossRef] [PubMed]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; Wiley-Interscience: New York, NY, USA, 2006. [Google Scholar]
- Crutchfield, J.P. Between order and chaos. Nat. Phys. 2012, 8, 17–24. [Google Scholar] [CrossRef]
- Shaw, R. The Dripping Faucet as a Model Chaotic System; Aerial Press: Santa Cruz, CA, USA, 1984. [Google Scholar]
- Arnold, D. Information-theoretic analysis of phase transitions. Complex Syst. 1996, 10, 143–155. [Google Scholar]
- Crutchfield, J.P.; Feldman, D.P. Statistical complexity of simple one-dimensional spin systems. Phys. Rev. E 1997, 55, R1239. [Google Scholar] [CrossRef]
- Feldman, D.P.; Crutchfield, J.P. Structural information in two-dimensional patterns: Entropy convergence and excess entropy. Phys. Rev. E 2003, 67, 051104. [Google Scholar] [CrossRef] [PubMed]
- Feldman, D.P.; McTague, C.S.; Crutchfield, J.P. The organization of intrinsic computation: Complexity-entropy diagrams and the diversity of natural information processing. Chaos 2008, 18, 043106. [Google Scholar] [CrossRef] [PubMed]
- Lau, H.W.; Grassberger, P. Information theoretic aspects of the two-dimensional Ising model. Phys. Rev. E 2013, 87, 022128. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S. Information theoretical analysis of multivariate correlation. IBM J. Res. Dev. 1960, 4, 66–82. [Google Scholar] [CrossRef]
- Schreiber, T. Measuring information transfer. Phys. Rev. Lett. 2000, 85, 461–464. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, S.A.; Plumbley, M.D. A measure of statistical complexity based on predictive information with application to finite spin systems. Phys. Lett. A 2012, 376, 275–281. [Google Scholar] [CrossRef]
- Han, T.S. Linear dependence structure of the entropy space. Inf. Control 1975, 29, 337–368. [Google Scholar] [CrossRef]
- Han, T.S. Nonnegative entropy measures of multivariate symmetric correlations. Inf. Control 1978, 36, 133–156. [Google Scholar] [CrossRef]
- Verdú, S.; Weissman, T. Erasure entropy. In Proceedings of the 2006 IEEE International Symposium on Information Theory, Seattle, WA, USA, 9–14 July 2006; pp. 98–102. [Google Scholar]
- James, R.G.; Burke, K.; Crutchfield, J.P. Chaos forgets and remembers: Measuring information creation, destruction, and storage. Phys. Lett. A 2014, 378, 2124–2127. [Google Scholar] [CrossRef]
- James, R.G.; Ellison, C.J.; Crutchfield, J.P. Anatomy of a bit: Information in a time series observation. Chaos 2011, 21, 037109. [Google Scholar] [CrossRef] [PubMed]
- Marzen, S.; Crutchfield, J.P. Information anatomy of stochastic equilibria. Entropy 2014, 16, 4713–4748. [Google Scholar] [CrossRef]
- Pikovsky, A.; Rosenblum, M.; Kurths, J. Synchronization: A Universal Concept in Nonlinear Sciences; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Jaynes, E.T. Gibbs versus Boltzmann entropies. Am. J. Phys. 1965, 33, 391–398. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423, 623–656. [Google Scholar] [CrossRef]
- Grandy, W.T. Entropy and the Time Evolution of Macroscopic Systems; Oxford University Press: Oxford, UK, 2008; Volume 141. [Google Scholar]
- Ruelle, D. Statistical Mechanics: Rigorous Results; World Scientific: Singapore, 1969. [Google Scholar]
- Grimett, G.R. Percolation, 2nd ed.; Springer: Berlin, Germany, 1999. [Google Scholar]
- Reza, F.M. An Introduction to Information Theory; Courier Corporation: North Chelmsford, MA, USA, 1961. [Google Scholar]
- Goldstein, S.; Kuik, R.; Schlijper, A.G. Entropy and global Markov properties. Commun. Math. Phys. 1990, 126, 469–482. [Google Scholar] [CrossRef]
- Schlijper, A.G.; Smit, B. Two-sided bounds on the free energy from local states in Monte Carlo simulations. J. Stat. Phys. 1989, 56, 247–260. [Google Scholar] [CrossRef]
- Schürmann, T. A Note on Entropy Estimation. arXiv, 2015; arXiv:1503.05911. [Google Scholar]
- Wolff, U. Collective Monte Carlo updating for spin systems. Phys. Rev. Lett. 1989, 62, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Yutaka, M.; Kataura, H.; Matsuda, K.; Okabe, Y. A one-dimensional Ising model for C 70 molecular ordering in C 70-peapods. New J. Phys. 2003, 5, 127. [Google Scholar]
- Zimmermann, F.M.; Pan, X. Interaction of H2 with Si(001) − (2×1): Solution of the barrier puzzle. Phys. Rev. Lett. 2000, 85, 618–621. [Google Scholar] [CrossRef] [PubMed]
- Zimm, B.H. Theory of “melting” of the helical form in double chains of the DNA type. J. Chem. Phys. 1960, 33, 1349–1356. [Google Scholar] [CrossRef]
- Wartell, R.M.; Benight, A.S. Thermal denaturation of DNA molecules: A comparison of theory with experiment. Phys. Rep. 1985, 126, 67–107. [Google Scholar] [CrossRef]
- Durlauf, S.N. How can statistical mechanics contribute to social science? Proc. Natl. Acad. Sci. USA 1999, 96, 10582–10584. [Google Scholar] [CrossRef] [PubMed]
- Pathria, R.K.; Beale, P.D. Statistical Mechanics; Elsevier Science: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Baxter, R.J. Exactly Solved Models in Statistical Mechanics; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Pfeuty, P. An exact result for the 1D random Ising model in a transverse field. Phys. Lett. A 1979, 72, 245–246. [Google Scholar] [CrossRef]
- Feldman, D.P. Computational Mechanics of Classical Spin Systems. Ph.D. Thesis, University of California, Davis, CA, USA, 1998. [Google Scholar]
- Yilmaz, M.B.; Zimmermann, F.M. Exact cluster size distribution in the one-dimensional Ising model. Phys. Rev. E 2005, 71, 026127. [Google Scholar] [CrossRef] [PubMed]
- Bollobás, B. Random Graphs Vol. 73, Cambridge Studies in Advanced Mathematics; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Marcus, B.; Pavlov, R. Computing bounds for entropy of stationary Zd Markov random fields. SIAM J. Discret. Math. 2013, 27, 1544–1558. [Google Scholar] [CrossRef]
- Lizier, J.; Prokopenko, M.; Zomaya, A. Information modification and particle collisions in distributed computation. Chaos 2010, 20, 037109. [Google Scholar] [CrossRef] [PubMed]
- Jerrum, M.; Sinclair, A. Polynomial-time approximation algorithms for the Ising model. SIAM J. Comput. 1993, 22, 1087–1116. [Google Scholar] [CrossRef]
- James, R.G.; Barnett, N.; Crutchfield, J.P. Information flows? A critique of transfer entropies. Phys. Rev. Lett. 2016, 116, 238701. [Google Scholar] [CrossRef] [PubMed]
- Ara, P.M.; James, R.G.; Crutchfield, J.P. The elusive present: Hidden past and future dependence and why we build models. Phys. Rev. E 2016, 93, 022143. [Google Scholar] [CrossRef] [PubMed]
- Ball, R.C.; Diakonova, M.; MacKay, R.S. Quantifying emergence in terms of persistent mutual information. Adv. Complex Syst. 2010, 13, 327–338. [Google Scholar] [CrossRef]
- Potts, R.B. Some generalized order-disorder transformations. In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge University Press: Cambridge, UK, 1952; Volume 48, pp. 106–109. [Google Scholar]
- Robinson, M.D.; Feldman, D.P.; McKay, S.R. Local entropy and structure in a two-dimensional frustrated system. Chaos 2011, 21, 037114. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vijayaraghavan, V.S.; James, R.G.; Crutchfield, J.P. Anatomy of a Spin: The Information-Theoretic Structure of Classical Spin Systems. Entropy 2017, 19, 214. https://doi.org/10.3390/e19050214
Vijayaraghavan VS, James RG, Crutchfield JP. Anatomy of a Spin: The Information-Theoretic Structure of Classical Spin Systems. Entropy. 2017; 19(5):214. https://doi.org/10.3390/e19050214
Chicago/Turabian StyleVijayaraghavan, Vikram S., Ryan G. James, and James P. Crutchfield. 2017. "Anatomy of a Spin: The Information-Theoretic Structure of Classical Spin Systems" Entropy 19, no. 5: 214. https://doi.org/10.3390/e19050214
APA StyleVijayaraghavan, V. S., James, R. G., & Crutchfield, J. P. (2017). Anatomy of a Spin: The Information-Theoretic Structure of Classical Spin Systems. Entropy, 19(5), 214. https://doi.org/10.3390/e19050214