Axiomatic Characterization of the Quantum Relative Entropy and Free Energy
Abstract
:1. Introduction
- Continuity: For fixed , the map is continuous [15].
- Data-processing inequality: For any quantum channel T we have,
- Additivity:
- Super-additivity: For any bipartite state with marginals we have
2. Axiomatic Derivation of Quantum Relative Entropy
- The map is continuous for any fixed σ.
- Additivity: .
- Super-additivity:
3. Uniqueness of the Free Energy
3.1. Catalysts and Correlations
3.2. Free Energy as a Unique Measure of Non-Equilibrium
- Continuity: For fixed Hamiltonian H, the map is continuous.
- Additivity:
- Monotonicity:
- (a)
- Monotonicity:if .
- (b)
- Catalytic monotonicity:if .
- (c)
- Marginal-catalytic monotonicity:if .
- (d)
- Correlated-catalytic monotonicity:if .
4. Connection to Entropy Production in Master Equations
5. Discussion and Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Gauge Invariance of
Appendix B. Rank-Decreasing Quantum Channels
Appendix C. Proof of Theorem 3 and Other Equivalences
- (i)
- (ii)
- fulfills catalytic monotonicity III.b and additivity II. ⇔ fulfills additivity (30) and the DPI (31).
- (iii)
- (iv)
References
- Hiai, F.; Petz, D. The proper formula for relative entropy and its asymptotics in quantum probability. In Asymptotic Theory of Quantum Statistical Inference; World Scientific: Singapore, 2005; pp. 43–63. [Google Scholar]
- Ogawa, T.; Nagaoka, H. Strong converse and Stein’s Lemma in quantum hypothesis testing. In Asymptotic Theory of Quantum Statistical Inference; World Scientific: Singapore, 2005; pp. 28–42. [Google Scholar]
- Brandao, F.G.; Plenio, M.B. A generalization of quantum Stein’s Lemma. Commun. Math. Phys. 2010, 295, 791–828. [Google Scholar] [CrossRef]
- Vedral, V. The role of relative entropy in quantum information theory. Rev. Mod. Phys. 2002, 74, 197–234. [Google Scholar] [CrossRef]
- Vedral, V.; Plenio, M.B.; Rippin, M.A.; Knight, P.L. Quantifying Entanglement. Phys. Rev. Lett. 1997, 78, 2275–2279. [Google Scholar] [CrossRef]
- Brandao, F.G.S.L.; Horodecki, M.; Oppenheim, J.; Renes, J.M.; Spekkens, R.W. The resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett. 2013, 111, 250404. [Google Scholar] [CrossRef] [PubMed]
- Brandao, F.G.S.L.; Gour, G. The general structure of quantum resource theories. Phys. Rev. Lett. 2015, 115, 070503. [Google Scholar] [CrossRef] [PubMed]
- Junge, M.; Renner, R.; Sutter, D.; Wilde, M.M.; Winter, A. Universal recoverability in quantum information. In Proceedings of the 2016 IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain, 10–15 July 2016; pp. 2494–2498. [Google Scholar]
- Kastoryano, M.J.; Eisert, J. Rapid mixing implies exponential decay of correlations. J. Math. Phys. 2013, 54, 102201. [Google Scholar] [CrossRef]
- Bernigau, H.; Kastoryano, M.J.; Eisert, J. Mutual information area laws for thermal free fermions. J. Stat. Phys. 2015, 2015, P02008. [Google Scholar] [CrossRef]
- Goold, J.; Huber, M.; Riera, A.; del Rio, L.; Skrzypczyk, P. The role of quantum information in thermodynamics—A topical review. J. Phys. A 2016, 49, 143001. [Google Scholar] [CrossRef]
- Gallego, R.; Eisert, J.; Wilming, H. Thermodynamic work from operational principles. New J. Phys. 2016, 18, 103017. [Google Scholar] [CrossRef]
- Lashkari, N.; Van Raamsdonk, M. Canonical energy is quantum Fisher information. J. High Energy Phys. 2016, 2016, 153. [Google Scholar] [CrossRef]
- Matsumoto, K. Reverse test and characterization of quantum relative entropy. arXiv 2010. [Google Scholar]
- Audenaert, K.M.R.; Eisert, J. Continuity bounds on the quantum relative entropy. J. Math. Phys. 2005, 46, 102104. [Google Scholar] [CrossRef]
- Tomamichel, M. Quantum Information Processing with Finite Resources: SpringerBriefs in Mathematical Physics; Springer: Berlin/Heidelberg, Germany, 2016; Volume 5. [Google Scholar]
- Janzing, D.; Wocjan, P.; Zeier, R.; Geiss, R.; Beth, T. Thermodynamic Cost of Reliability and Low Temperatures: Tightening Landauer’s Principle and the Second Law. Int. J. Theor. Phys. 2000, 39, 2717. [Google Scholar] [CrossRef]
- Horodecki, M.; Oppenheim, J. Fundamental limitations for quantum and nanoscale thermodynamics. Nat. Commum. 2013, 4, 2059. [Google Scholar] [CrossRef] [PubMed]
- Brandao, F.G.S.L.; Horodecki, M.; Ng, N.H.Y.; Oppenheim, J.; Wehner, S. The second laws of quantum thermodynamics. Proc. Natl. Acad. Sci. USA 2015, 112, 3275–3279. [Google Scholar] [CrossRef] [PubMed]
- Gour, G. Quantum resource theories in the single-shot regime. arXiv 2017. [Google Scholar]
- Buscemi, F.; Gour, G. Quantum relative Lorenz curves. Phys. Rev. A 2017, 95, 012110. [Google Scholar] [CrossRef]
- Lostaglio, M.; Müller, M.P.; Pastena, M. Stochastic Independence as a Resource in Small-Scale Thermodynamics. Phys. Rev. Lett. 2015, 115, 150402. [Google Scholar] [CrossRef] [PubMed]
- Ng, N.H.Y.; Mančinska, L.; Cirstoiu, C.; Eisert, J.; Wehner, S. Limits to catalysis in quantum thermodynamics. New J. Phys. 2015, 17, 085004. [Google Scholar] [CrossRef]
- Alicki, R.; Lendi, K. Quantum Dynamical Semigroups and Applications; Springer: Berlin/Heidelberg, Germany, 2007; Volume 717. [Google Scholar]
- Spohn, H. Entropy production for quantum dynamical semigroups. J. Math. Phys. 1978, 19, 1227. [Google Scholar] [CrossRef]
- Spohn, H.; Lebowitz, J.L. Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs. Adv. Chem. Phys. 1978, 38, 109–142. [Google Scholar]
- Schlögl, F. Zur statistischen Theorie der Entropieproduktion in nicht abgeschlossenen Systemen. Z. Phys. 1966, 191, 81–90. [Google Scholar] [CrossRef]
- Sparaciari, C.; Oppenheim, J.; Fritz, T. A resource theory for work and heat. arXiv 2016. [Google Scholar]
- Alhambra, A.M.; Wehner, S.; Wilde, M.M.; Woods, M.P. Work and reversibility in quantum thermodynamics. arXiv 2017. [Google Scholar]
- Sparaciari, C.; Jennings, D.; Oppenheim, J. Energetic instability of passive states in thermodynamics. arXiv 2017. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilming, H.; Gallego, R.; Eisert, J. Axiomatic Characterization of the Quantum Relative Entropy and Free Energy. Entropy 2017, 19, 241. https://doi.org/10.3390/e19060241
Wilming H, Gallego R, Eisert J. Axiomatic Characterization of the Quantum Relative Entropy and Free Energy. Entropy. 2017; 19(6):241. https://doi.org/10.3390/e19060241
Chicago/Turabian StyleWilming, Henrik, Rodrigo Gallego, and Jens Eisert. 2017. "Axiomatic Characterization of the Quantum Relative Entropy and Free Energy" Entropy 19, no. 6: 241. https://doi.org/10.3390/e19060241
APA StyleWilming, H., Gallego, R., & Eisert, J. (2017). Axiomatic Characterization of the Quantum Relative Entropy and Free Energy. Entropy, 19(6), 241. https://doi.org/10.3390/e19060241