Application of Entropy Generation to Improve Heat Transfer of Heat Sinks in Electric Machines
Abstract
:1. Introduction
2. Entropy Generation
3. Numerical Method
4. Grid-Independence Test
5. Investigations of Heat Transfer
5.1. Base Design Analysis
5.2. Position Optimization
- all variables have a real representation;
- each of the 50 generations contains 24 individuals;
- a tournament with two cycles is used to select parents;
- SBX is used for cross-over with a distribution index of and a probability of [34];
- a mutation with a distribution index of and probability of is applied, and
- the new generation replaces the old one.
5.3. Increasing the Wetted Area
5.4. Comparison with Full Model
6. Conclusions
Author Contributions
Conflicts of Interest
Nomenclature
Roman Letters | |
Entropy generation due to conduction | |
Entropy generation due to dissipation | |
Total entropy generation | |
h | Wall heat transfer coefficient |
k | Thermal conductivity |
First node distance | |
Maximum element size | |
Wall temperature | |
Greek Letters | |
Thermal diffusivity | |
Dynamic viscosity | |
Turbulent frequency | |
Irreversibility ratio | |
Density | |
Turbulent kinetic energy | |
Dimensionless Quantities | |
Turbulent Prandtl number | |
Dimensionless temperature difference | |
Dimensionless wall distance | |
Superscripts | |
Time mean component | |
Fluctuation component | |
Value per volume |
References
- Thévenin, D.; Janiga, G. Optimization and Computational Fluid Dynamics; Springer-Verlag: Berlin, Germany, 2008. [Google Scholar]
- Eger, T.; Bol, T.; Thévenin, D.; Schroth, R.; Janiga, G. Preliminary numerical investigations of entropy generation in electric machines based on a canonical configuration. Entropy 2015, 17, 8187–8206. [Google Scholar] [CrossRef]
- Eger, T.; Bol, T.; Daróczy, L.; Janiga, G.; Schroth, R.; Thévenin, D. Numerical investigations of entropy generation to analyze and improve heat transfer processes in electric machines. Int. J. Heat Mass Transf. 2016, 102, 1199–1208. [Google Scholar] [CrossRef]
- Eger, T.; Thévenin, D.; Janiga, G.; Bol, T.; Schroth, R. Identification of a Canonical Configuration for a Quantitative Analysis of Transport Phenomena in Electric Machines Based on Entropy Generation. In Energy and Sustainability V; Al-Kayiem, H., Brebbia, C., Zubir, S., Eds.; WIT Press: Southampton, UK, 2014; Volume 186, pp. 751–762. [Google Scholar]
- Eger, T.; Thévenin, D.; Janiga, G.; Bol, T.; Schroth, R. Numerical investigations of residence time distribution of air in electric machines based on a canonical configuration. In Proceedings of the Conference on Modelling Fluid Flow, Budapest, Hungary, 1–4 September 2015; pp. 1–8. [Google Scholar]
- Bejan, A. Entropy generation minimization: The new thermodynamics of finite size devices and finite time processes. J. Appl. Phys. 1996, 79, 1191–1218. [Google Scholar] [CrossRef]
- Bejan, A. Method of entropy generation minimization, or modeling and optimization based on combined heat transfer and thermodynamics. Revue Générale de Thermique 1996, 35, 637–646. [Google Scholar] [CrossRef]
- Bejan, A.; Lorente, S. The constructal law and the evolution of design in nature. Phys. Life Rev. 2011, 8, 209–240. [Google Scholar] [CrossRef] [PubMed]
- Poulikakos, A.; Bejan, A. Fin geometry for minimum entropy generation in forced convection. J. Heat Transf. 1982, 104, 616–623. [Google Scholar] [CrossRef]
- Fowler, A.J.; Bejan, A. Correlation of optimal sizes of bodies with external forced convection heat transfer. Int. Commun. Heat Mass Transf. 1994, 21, 17–27. [Google Scholar] [CrossRef]
- Carrington, C.; Sun, Z. Second law analysis of combined heat and mass transfer in internal and external flows. Int. J. Heat Fluid Flow 1992, 13, 65–70. [Google Scholar] [CrossRef]
- Ko, T.; Ting, K. Entropy generation and optimal analysis for laminar forced convection in curved rectangular ducts: A numerical study. Int. J. Therm. Sci. 2006, 45, 138–150. [Google Scholar] [CrossRef]
- Şahin, A.Z. Irreversibilities in various duct geometries with constant wall heat flux and laminar flow. Energy 1998, 23, 465–473. [Google Scholar] [CrossRef]
- Chen, C.T.; Chen, H.I. Multi-objective optimization design of plate-fin heat sinks using a direction-based genetic algorithm. J. Taiwan Inst. Chem. Eng. 2013, 44, 257–265. [Google Scholar] [CrossRef]
- Adham, A.M.; Mohd-Ghazali, N.; Ahmad, R. Optimization of a rectangular microchannel heat sink using entropy generation minimization (EGM) and genetic algorithm (GA). Arab. J. Sci. Eng. 2014, 39, 7211–7222. [Google Scholar] [CrossRef]
- Herwig, H.; Wenterodt, T. Second law analysis of momentum and heat transfer in unit operations. Int. J. Heat Mass Transf. 2011, 54, 1323–1330. [Google Scholar] [CrossRef]
- Jin, Y.; Herwig, H. Turbulent flow and heat transfer in channels with shark skin surfaces: Entropy generation and its physical significance. Int. J. Heat Mass Transf. 2014, 70, 10–22. [Google Scholar] [CrossRef]
- Wenterodt, T.; Herwig, H. The entropic potential concept: A new way to look at energy transfer operations. Entropy 2014, 16, 2071–2084. [Google Scholar] [CrossRef]
- Kock, F.; Herwig, H. Local entropy production in turbulent shear flows: A high-Reynolds number model with wall functions. Int. J. Heat Mass Transf. 2004, 47, 2205–2215. [Google Scholar] [CrossRef]
- Kock, F.; Herwig, H. Entropy production calculation for turbulent shear flows and their implementation in CFD codes. Int. J. Heat Fluid Flow 2005, 26, 672–680. [Google Scholar] [CrossRef]
- Giangaspero, G.; Sciubba, E. Application of the EGM method to a LED-based spotlight: A constrained pseudo-optimization design process based on the analysis of the local entropy generation maps. Entropy 2011, 13, 1212–1228. [Google Scholar] [CrossRef]
- Giangaspero, G.; Sciubba, E. Application of the entropy generation minimization method to a solar heat exchanger: A pseudo-optimization design process based on the analysis of the local entropy generation maps. Energy 2013, 58, 52–65. [Google Scholar] [CrossRef]
- Khan, W.; Yovanovich, M.; Culham, J. Optimization of microchannel heat sinks using entropy generation minimization method. In Proceedings of the Semiconductor Thermal Measurement and Management Symposium, Dallas, TX, USA, 14–16 March 2006; pp. 78–86. [Google Scholar]
- Yang, W.J.; Furukawa, T.; Torii, S. Optimal package design of stacks of convection-cooled printed circuit boards using entropy generation minimization method. Int. J. Heat Mass Transf. 2008, 51, 4038–4046. [Google Scholar] [CrossRef]
- Shih, C.; Liu, G. Optimal design methodology of plate-fin heat sinks for electronic cooling using entropy generation strategy. IEEE Trans. Compon. Packag. Technol. 2004, 27, 551–559. [Google Scholar] [CrossRef]
- Culham, J.; Muzychka, Y. Optimization of plate fin heat sinks using entropy generation minimization. IEEE Trans. Compon. Packag. Technol. 2001, 24, 159–165. [Google Scholar] [CrossRef]
- Sciacovelli, A.; Verda, V.; Sciubba, E. Entropy generation analysis as a design tool—A review. Renew. Sustain. Energy Rev. 2015, 43, 1167–1181. [Google Scholar] [CrossRef]
- Kock, F. Bestimmung der Lokalen Entropieproduktion in Turbulenten Strömungen und deren Nutzung zur Bewertung Konvektiver Transportprozesse. Ph.D. Thesis, Technische Universität Hamburg-Harburg, Hamburg, Germany, 2003. (In German). [Google Scholar]
- Bejan, A. Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes. In Mechanical and Aerospace Engineering Series; CRC Press: Florida, FL, USA, 1995. [Google Scholar]
- Gesellschaft, V. VDI Heat Atlas; Springer: Berlin, Germany, 2010. [Google Scholar]
- Menter, F. Improved Two-Equation k-Mmega Turbulence Models for Aerodynamic Flows; Technical Report; NASA Ames Research Center: Moffett Field, CA, USA, 2008.
- Daróczy, L.; Janiga, G.; Thévenin, D. Systematic analysis of the heat exchanger arrangement problem using multi-objective genetic optimization. Energy 2014, 65, 364–373. [Google Scholar] [CrossRef]
- Daróczy, L. Practical Issues in the Optimization of CFD Based Engineering Problems. Ph.D. Thesis, Otto von Guericke University Magdeburg, Magdeburg, Germany, 2016. Available online: http://edoc2.bibliothek.uni-halle.de/hs/content/titleinfo/61051 (accessed on 29 May 2017).
- Deb, K.; Agrawal, R.B. Simulated binary crossover for continuous search space. Complex Syst. 1995, 9, 115–148. [Google Scholar]
- Shi, K. Integrale Analyse der Wärmeübertragung in Elektrischen Generatoren. Master’s Thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2016. (In German). [Google Scholar]
change in | −1.66 K (−4.83%) |
change in h | 3.90W/m2 K (6.46%) |
Third Row | First Row | |
---|---|---|
change in | −1.42 (−4.12 %) | −2.17 (−6.30 %) |
change in h | −1.40 (−2.29 %) | 1.06 (1.74%) |
change in | −2.31 (−6.72 %) |
change in h | 0.74 (1.22%) |
change in | −2.00 (−6.43 % ) |
change in h | 0.40 (0.64%) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eger, T.; Bol, T.; Thanu, A.R.; Daróczy, L.; Janiga, G.; Schroth, R.; Thévenin, D. Application of Entropy Generation to Improve Heat Transfer of Heat Sinks in Electric Machines. Entropy 2017, 19, 255. https://doi.org/10.3390/e19060255
Eger T, Bol T, Thanu AR, Daróczy L, Janiga G, Schroth R, Thévenin D. Application of Entropy Generation to Improve Heat Transfer of Heat Sinks in Electric Machines. Entropy. 2017; 19(6):255. https://doi.org/10.3390/e19060255
Chicago/Turabian StyleEger, Toni, Thomas Bol, Ayothi Ramanathan Thanu, László Daróczy, Gábor Janiga, Rüdiger Schroth, and Dominique Thévenin. 2017. "Application of Entropy Generation to Improve Heat Transfer of Heat Sinks in Electric Machines" Entropy 19, no. 6: 255. https://doi.org/10.3390/e19060255
APA StyleEger, T., Bol, T., Thanu, A. R., Daróczy, L., Janiga, G., Schroth, R., & Thévenin, D. (2017). Application of Entropy Generation to Improve Heat Transfer of Heat Sinks in Electric Machines. Entropy, 19(6), 255. https://doi.org/10.3390/e19060255