Correntropy-Based Pulse Rate Variability Analysis in Children with Sleep Disordered Breathing
Abstract
:1. Introduction
2. Dataset
3. Methods
3.1. PPG Signal Processing
3.2. PRV Analysis in the Spectral Domain
3.3. Correntropy Spectral Density (CSD)
3.4. Data Analysis
3.5. Nonlinearity Test Using Surrogate Data
4. Results
4.1. Univariate Analysis
4.2. Multivariate Model Development and Classification
4.3. Nonlinearity Test
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kaditis, A.G.; Alvarez, M.; Boudewyns, A.; Alexopoulos, E.I.; Ersu, R.; Joosten, K.; Larramona, H.; Miano, S.; Narang, I.; Trang, H.; et al. Obstructive sleep disordered breathing in 2–18 year-old children: Diagnosis and management. Eur. Respir. J. 2016, 47, 69–94. [Google Scholar] [CrossRef] [PubMed]
- Marcus, C.L.; Brooks, L.J.; Draper, K.A.; Gozal, D.; Halbower, A.C.; Jones, J.; Lehmann, C.; Schechter, M.S.; Sheldon, S.; Shiffman, R.N.; et al. Diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics 2012, 130, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Garde, A.; Karlen, W.; Dehkordi, P.; Ansermino, J.M.; Dumont, G.A. Oxygen Saturation in Children with and without Obstructive Sleep Apnea Using the Phone-Oximeter. Conf. Proc. IEEE Eng. Med. Biol. 2013, 4, 3–6. [Google Scholar] [CrossRef]
- Khoo, M.C.K.K.; Blasi, A. Sleep-related changes in autonomic control in obstructive sleep apnea: A model-based perspective. Respir. Physiol. Neurobiol. 2013, 188, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Gil, E.; Mendez, M.; Vergara, J.M.; Cerutti, S.; Bianchi, A.M.; Laguna, P. Discrimination of sleep-apnea-related decreases in the amplitude fluctuations of PPG signal in children by HRV analysis. IEEE Trans. Biomed. Eng. 2009, 56, 1005–1014. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Tobal, G.C.; Álvarez, D.; Gomez-Pilar, J.; Del Campo, F.; Hornero, R. Assessment of time and frequency domain entropies to detect sleep apnoea in heart rate variability recordings from men and women. Entropy 2015, 17, 123–141. [Google Scholar] [CrossRef]
- Tobaldini, E.; Nobili, L.; Strada, S.; Casali, K.R.; Braghiroli, A.; Montano, N. Heart rate variability in normal and pathological sleep. Front. Physiol. 2013, 4, 294. [Google Scholar] [CrossRef] [PubMed]
- Dehkordi, P.; Garde, A.; Karlen, W.; Wensley, D.; Ansermino, J.; Dumont, G.A. Pulse rate variability compared with heart rate variability in children with and without sleep disordered breathing. Conf. Proc. IEEE Eng. Med. Biol. 2013, 2013, 6563–6566. [Google Scholar] [CrossRef]
- Lázaro, J.; Gil, E.; Vergara, J.M.; Laguna, P. Pulse rate variability analysis for discrimination of sleep-apnea-related decreases in the amplitude fluctuations of pulse photoplethysmographic signal in children. IEEE J. Biomed. Health Inf. 2014, 18, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Dehkordi, P.; Garde, A.; Karlen, W.; Petersen, C.L.; Wensley, D.; Dumont, G.A.; Ansermino, J.M. Evaluation of cardiac modulation in children in response to apnea/hypopnea using the Phone Oximeter™. Physiol. Meas. 2016, 37, 187. [Google Scholar] [CrossRef] [PubMed]
- Goldberger, A. Is the Normal Heartbeat Chaotic or Homeostatic? News Physiol. Sci. 1991, 6, 87–91. [Google Scholar] [PubMed]
- Wessel, N.; Riedl, M.; Kurths, J. Is the normal heart rate “chaotic” due to respiration? Chaos 2009, 19, 028508. [Google Scholar] [CrossRef] [PubMed]
- Perkiömäki, J. Heart rate variability and non-linear dynamics in risk stratification. Front. Physiol. 2011, 2, 1–8. [Google Scholar] [CrossRef]
- Al-Angari, H.M.; Sahakian, A.V. Use of Sample Entropy Approach to Study Heart Rate Variability in Obstructive Sleep Apnea Syndrome. IEEE Trans. Biomed. Eng. 2007, 54, 1900–1904. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.Y.; Su, M.C.; Wu, H.T.; Lin, M.C.; Tsai, I.T.; Sun, C.K. Multiscale Entropy Analysis of Heart Rate Variability for Assessing the Severity of Sleep Disordered Breathing. Entropy 2015, 17, 231–243. [Google Scholar] [CrossRef]
- Santamaría, I.; Member, S.; Pokharel, P.P.; Member, S.; Principe, J.C. Generalized Correlation Function: Definition, Properties, and Application to Blind Equalization. IEEE Trans. Biomed. Eng. 2006, 54, 2187–2197. [Google Scholar] [CrossRef]
- Gunduz, A.; Hegde, A.; Principe, J.C. Correntropy as a Novel Measure for Nonlinearity Tests. Signal Process. 2009, 89, 14–23. [Google Scholar] [CrossRef]
- Iber, C.; Ancoli-Israel, S.; Chesson, A.; Quan, S.F. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications; American Academy of Sleep Medicine: Darien, IL, USA, 2007. [Google Scholar]
- Karlen, W.; Kobayashi, K.; Ansermino, J.M.; Dumont, G.A. Photoplethysmogram signal quality estimation using repeated Gaussian filters and cross-correlation. Physiol. Meas. 2012, 33, 1617–1629. [Google Scholar] [CrossRef] [PubMed]
- Penzel, T.; Kantelhardt, J.W.; Grote, L.; Peter, J.; Bunde, A. Comparison of Detrended Fluctuation Analysis and Spectral Analysis for Heart Rate Variability in Sleep and Sleep Apnea. IEEE Trans. Biomed. Eng. 2003, 50, 1143–1151. [Google Scholar] [CrossRef] [PubMed]
- Garde, A.; Sornmo, L.; Jané, R. Correntropy-based analysis of respiratory patterns in patients with chronic heart failure. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 2009, 4687–4690. [Google Scholar] [CrossRef] [PubMed]
- Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle; Springer: New York, NY, USA, 1973; pp. 267–281. [Google Scholar]
- Steyerberg, E.W.; Harrell, F.E.; Borsboom, G.J.J.; Eijkemans, M.J.; Vergouwe, Y.; Habbema, J.D.F. Internal validation of predictive models: Efficiency of some procedures for logistic regression analysis. J. Clin. Epidemiol. 2001, 54, 774–781. [Google Scholar] [CrossRef]
- Ewout, W.S. Clinical Prediction Models. 2009. Available online: http://www.clinicalpredictionmodels.org/ (accessed on 31 May 2017).
- Porta, A.; Furlan, R.; Gnecchi-Ruscone, T.; Montano, N.; Malliani, A. Complexity and Nonlinearity in Short-Term Heart Period Variability: Comparison of Methods Based on Local Nonlinear Prediction. IEEE Trans. Biomed. Eng. 2007, 54, 94–106. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, T.; Schmitz, A. Improved Surrogate Data for Nonlinearity Tests. Phys. Rev. Lett. 1996, 77, 635–638. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, T.; Schmitz, A. Surrogate time series. Physics D 2000, 142, 346–382. [Google Scholar] [CrossRef]
- Garde, A.; Sörnmo, L.; Jané, R.; Giraldo, B.F. Correntropy-based Spectral Characterization of Respiratory Patterns in Patients with Chronic Heart Failure. IEEE Trans. Biomed. Eng. 2010, 57, 1964–1972. [Google Scholar] [CrossRef] [PubMed]
- Garde, A.; Sornmo, L.; Jane, R.; Giraldo, B.F. Correntropy-based nonlinearity test applied to patients with chronic heart failure. Proc. IEEE Conf. Eng. Med. Biol. 2010, 2010, 2399–2402. [Google Scholar] [CrossRef]
- Gil, E.; Orini, M.; Bailón, R.; Vergara, J.M.; Mainardi, L.; Laguna, P. Photoplethysmography pulse rate variability as a surrogate measurement of heart rate variability during non-stationary conditions. Physiol. Meas. 2010, 31, 1271–1290. [Google Scholar] [CrossRef] [PubMed]
- Szollosi, I.; Krum, H.; Kaye, D.; Naughton, M.T. Sleep Apnea in Heart Failure Increases Heart Rate Variability and Sympathetic Dominance. Sleep 2007, 11, 1509–1514. [Google Scholar] [CrossRef]
- Gil, E.; Bailón, R.; Vergara, J.M.; Laguna, P. PTT Variability for Discrimination of Sleep Apnea Related Decreases in the Amplitude Fluctuations of PPG Signal in Children. IEEE Trans. Biomed. Eng. 2010, 57, 1079–1088. [Google Scholar] [CrossRef] [PubMed]
- Garde, A.; Dehkordi, P.; Karlen, W.; Wensley, D.; Ansermino, J.M.; Dumont, G.A. Development of a screening tool for sleep disordered breathing in children using the phone oximeter™. PLoS ONE 2014, 9, e112959. [Google Scholar] [CrossRef] [PubMed]
- Garde, A.; Dekhordi, P.; Ansermino, J.M.; Dumont, G.A. Identifying individual sleep apnea/hypoapnea epochs using smartphone-based pulse oximetry. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2016, 2016, 3195–3198. [Google Scholar] [CrossRef] [PubMed]
Spectral PRV | Features | OSA—Median (IQR) | Non-OSA—Median (IQR) | All Epochs | Odds Ratio (OR) | AUC (95% CI) |
---|---|---|---|---|---|---|
CSD-based | VLF * | 15.48 (5.34) | 13.47 (3.12) | 13.55 (3.31) | 1.16 | 0.66 (0.65–0.67) |
LFn | 0.24 (0.11) | 0.18 (0.24) | 0.19 (0.10) | 1.09 † | 0.68 (0.68–0.69) | |
HFn | 0.53 (0.14) | 0.62 (0.37) | 0.62 (0.15) | 0.94 † | 0.72 (0.71–0.72) | |
LF/HF ratio | 0.45 (0.31) | 0.30 (0.77) | 0.31 (0.25) | 1.24 ‡ | 0.70 (0.69–0.71) | |
TP | 73.02 (21.74) | 73.23 (18.47) | 73.22 (18.66) | 1.00 ˘ | 0.50 (0.49–0.51) | |
PSD-based | VLF * | 16.14 (17.12) | 9.16 (17.12) | 9.59 (17.32) | 1.50 ˘ | 0.62 (0.61–0.63) |
LFn | 0.34 (0.28) | 0.25 (0.10) | 0.25 (0.25) | 1.26 ‡ | 0.62 (0.61–0.63) | |
HFn | 0.39 (0.35) | 0.59 (0.14) | 0.58 (0.38) | 0.78 ‡ | 0.67 (0.66–0.68) | |
LF/HF ratio | 0.89 (1.50) | 0.44 (0.31) | 0.46 (0.82) | 1.04 ˆ | 0.66 (0.65–0.67) | |
TP | 76.58 (47.90) | 74.25 (48.70) | 73.39 (48.67) | 1.01 ˘ | 0.52 (0.51–0.53) |
Features CSD-Based Analysis | Parameter Estimate | Standard Error | p-Value |
---|---|---|---|
TP | − 0.02730 | 0.00336 | 4.6 × 10−16 |
LF/HF ratio | − 3.06 | 0.25 | <2 × 10−16 |
LFn | 16.90 | 1.08 | <2 × 10−16 |
VLF | 0.15 | 0.01 | <2 × 10−16 |
Features PSD-Based Analysis | Parameter Estimate | Standard Error | p-Value |
---|---|---|---|
HFn | − 2.90 | 0.10 | <2 × 10−16 |
TP | 0.004 | 0.000475 | <2 × 10−16 |
LF/HF ratio | − 0.0053 | 0.001959 | 0.0061 |
LFn | − 0.272 | 0.12 | 0.022 |
Model | Mean and 95% Confidence Intervals | ||||
---|---|---|---|---|---|
Acc (%) | Sn (%) | Sp (%) | AUC (%) | Optimism (%) | |
CSD-based analysis | 69 (68–71) | 70 (68–71) | 68 (67–70) | 72 (71–73) | 1.262 × 10−5 (−0.006051, 0.006888) |
PSD-based analysis | 64 (63–66) | 70 (68–71) | 62 (61–64) | 67 (66–68) | −8.712 × 10−5 (−0.005595, 0.00576) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garde, A.; Dehkordi, P.; Ansermino, J.M.; Dumont, G.A. Correntropy-Based Pulse Rate Variability Analysis in Children with Sleep Disordered Breathing. Entropy 2017, 19, 282. https://doi.org/10.3390/e19060282
Garde A, Dehkordi P, Ansermino JM, Dumont GA. Correntropy-Based Pulse Rate Variability Analysis in Children with Sleep Disordered Breathing. Entropy. 2017; 19(6):282. https://doi.org/10.3390/e19060282
Chicago/Turabian StyleGarde, Ainara, Parastoo Dehkordi, John Mark Ansermino, and Guy A. Dumont. 2017. "Correntropy-Based Pulse Rate Variability Analysis in Children with Sleep Disordered Breathing" Entropy 19, no. 6: 282. https://doi.org/10.3390/e19060282
APA StyleGarde, A., Dehkordi, P., Ansermino, J. M., & Dumont, G. A. (2017). Correntropy-Based Pulse Rate Variability Analysis in Children with Sleep Disordered Breathing. Entropy, 19(6), 282. https://doi.org/10.3390/e19060282