Clausius Relation for Active Particles: What Can We Learn from Fluctuations
Abstract
:1. Introduction
2. Heat and Entropy Production: From Macroscopic to Stochastic Thermodynamics
2.1. Macroscopic Level
2.2. Mesoscopic Level
3. Active Particles: The Coarse-Grained Heat and Clausius Relation
3.1. Heat Dissipation into the Solvent
3.2. Removing the Solvent from the Description
3.2.1. Equilibrium Bath with a Non-Conservative Force: Conjugated Entropy Production
3.2.2. Equilibrium Bath with a Non-Conservative Force: Standard Entropy Production
3.2.3. Non-Equilibrium Bath
3.3. Time-Dependent Potential
Very Slow Transformations
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Entropy Production
- The standard case in Equation (8) where is even and external (i.e., it does not depend upon ): . In this case, the last two terms in Equation (A5) become of higher order in and one gets:
- The case considered in [23], where and (“conjugated entropy production”) . In this case the last term becomes of higher order in , while the term cannot be discarded (as it contains ), and therefore one gets
- If in Equation (A8) the exact differentials (, and ) are removed, then only one terms remains:
- If a time-dependent potential is considered, then a second non-conservative force appears . We stress that the dependence upon time of is external, i.e., (keeping the standard recipe of stochastic thermodynamics) the probability of the reversed dynamics is generated by the same equation, that is no change of sign is attributed to . Basically we have . Introducing in Equation (A3) leads to the appearance of two new addends in the brackets of Equation (A5): one totally new term coming from the product ; one surviving term in the third addend. No new terms appear inside the fourth and fifth addend. In conclusion one gets
References
- Ramaswamy, S. The Mechanics and Statistics of Active Matter. Annu. Rev. Condens. Matter Phys. 2010, 1, 323–345. [Google Scholar] [CrossRef]
- Marchetti, M.C.; Joanny, J.F.; Ramaswamy, S.; Liverpool, T.B.; Prost, J.; Rao, M.; Simha, R.A. Hydrodynamics of soft active matter. Rev. Mod. Phys. 2013, 85, 1143. [Google Scholar] [CrossRef]
- Bechinger, C.; Leonardo, R.D.; Löwen, H.; Reichhardt, C.; Volpe, G.; Volpe, G. Active particles in complex and crowded environments. Rev. Mod. Phys. 2016, 88, 045006. [Google Scholar] [CrossRef]
- Cates, M. Diffusive transport without detailed balance in motile bacteria: Does microbiology need statistical physics? Rep. Prog. Phys. 2012, 75, 042601. [Google Scholar] [CrossRef] [PubMed]
- England, J.L. Statistical physics of self-replication. J. Chem. Phys. 2013, 139, 121923. [Google Scholar] [CrossRef] [PubMed]
- De Groot, S.R.; Mazur, P. Non-Equilibrium Thermodynamics; Dover Publications: New York, NY, USA, 1984. [Google Scholar]
- Gustafsson, L. Microbiological calorimetry. Thermochim. Acta 1991, 193, 145–171. [Google Scholar] [CrossRef]
- Lebowitz, J.L.; Spohn, H. A Gallavotti-Cohen-Type Symmetry in the Large Deviation Functional for Stochastic Dynamics. J. Stat. Phys. 1999, 95, 333–365. [Google Scholar] [CrossRef]
- Seifert, U. Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 2005, 95, 040602. [Google Scholar] [CrossRef] [PubMed]
- Marconi, U.M.B.; Puglisi, A.; Rondoni, L.; Vulpiani, A. Fluctuation-dissipation: Response theory in statistical physics. Phys. Rep. 2008, 461, 111–195. [Google Scholar] [CrossRef]
- Sekimoto, K. Stochastic Energetics; Springer: Berlin, Germany, 2010. [Google Scholar]
- Puglisi, A.; Visco, P.; Barrat, A.; Trizac, E.; van Wijland, F. Fluctuations of Internal Energy Flow in a Vibrated Granular Gas. Phys. Rev. Lett. 2005, 95, 110202. [Google Scholar] [CrossRef] [PubMed]
- Baule, A.; Touchette, H.; Cohen, E.G.D. Stick-slip motion of solids with dry friction subject to random vibrations and an external field. Nonlinearity 2011, 24, 351–372. [Google Scholar] [CrossRef]
- Cerino, L.; Puglisi, A. Entropy production for velocity-dependent macroscopic forces: The problem of dissipation without fluctuations. Europhys. Lett. 2015, 111, 40012. [Google Scholar] [CrossRef]
- Ganguly, C.; Chaudhuri, D. Stochastic thermodynamics of active Brownian particles. Phys. Rev. E 2013, 88, 032102. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Qian, H. Entropy Production of Brownian Macromolecules with Inertia. Phys. Rev. Lett. 2004, 93, 120602. [Google Scholar] [CrossRef] [PubMed]
- Munakata, T.; Rosinberg, M.L. Entropy production and fluctuation theorems under feedback control: The molecular refrigerator model revisited. J. Stat. Mech. 2012, 2012, P05010. [Google Scholar] [CrossRef]
- Munakata, T.; Rosinberg, M.L. Entropy Production and Fluctuation Theorems for Langevin Processes under Continuous Non-Markovian Feedback Control. Phys. Rev. Lett. 2014, 112, 180601. [Google Scholar] [CrossRef] [PubMed]
- Maggi, C.; Marconi, U.M.B.; Gnan, N.; Leonardo, R.D. Multidimensional stationary probability distribution for interacting active particles. Sci. Rep. 2015, 5, 10742. [Google Scholar] [CrossRef] [PubMed]
- Marconi, U.M.B.; Gnan, N.; Paoluzzi, M.; Maggi, C.; Leonardo, R.D. Velocity distribution in active particles systems. Sci. Rep. 2016, 6, 23297. [Google Scholar] [CrossRef] [PubMed]
- Marconi, U.M.B.; Puglisi, A.; Maggi, C. Heat, temperature and Clausius inequality in a model for active brownian particles. Sci. Rep. 2017, 7, 46496. [Google Scholar] [CrossRef] [PubMed]
- Fodor, E.; Nardini, C.; Cates, M.E.; Tailleur, J.; Visco, P.; van Wijland, F. How Far from Equilibrium Is Active Matter? Phys. Rev. Lett. 2016, 117, 038103. [Google Scholar] [CrossRef] [PubMed]
- Mandal, D.; Klymko, K.; DeWeese, M.R. Entropy production and fluctuation theorems for active matter. arXiv, 2017; arxiv:1704.02313. [Google Scholar]
- Chetrite, R.; Gawedzki, K. Fluctuation Relations for Diffusion Processes. Commun. Math. Phys. 2008, 282, 469–518. [Google Scholar] [CrossRef]
- Pradhan, P.; Seifert, U. Nonexistence of classical diamagnetism and nonequilibrium fluctuation theorems for charged particles on a curved surface. Europhys. Lett. 2010, 89, 37001. [Google Scholar] [CrossRef]
- Kwon, C.; Yeo, J.; Lee, H.K.; Park, H. Unconventional entropy production in the presence of momentum-dependent forces. J. Korean Phys. Soc. 2016, 68, 633. [Google Scholar] [CrossRef]
- Chernyak, V.Y.; Chertkov, M.; Jarzynski, C. Path-integral analysis of fluctuation theorems for general Langevin processes. J. Stat. Mech. Theory Exp. 2006, 2006, P08001. [Google Scholar] [CrossRef]
- Spinney, R.E.; Ford, I.J. Nonequilibrium Thermodynamics of Stochastic Systems with Odd and Even Variables. Phys. Rev. Lett. 2012, 108, 170603. [Google Scholar] [CrossRef] [PubMed]
- Chun, H.; Noh, J.D. Microscopic theory for the time irreversibility and the entropy production. arXiv, 2017; arxiv:1706.01691. [Google Scholar]
- Maggi, C.; Paoluzzi, M.; Pellicciotta, N.; Lepore, A.; Angelani, L.; Leonardo, R.D. Generalized Energy Equipartition in Harmonic Oscillators Driven by Active Baths. Phys. Rev. Lett. 2014, 113, 238303. [Google Scholar] [CrossRef] [PubMed]
- Szamel, G. Self-propelled particle in an external potential: Existence of an effective temperature. Phys. Rev. E 2014, 90, 012111. [Google Scholar] [CrossRef] [PubMed]
- Farage, T.F.F.; Krinninger, P.; Brader, J.M. Effective interactions in active Brownian suspensions. Phys. Rev. E 2015, 91, 042310. [Google Scholar] [CrossRef] [PubMed]
- Speck, T. Stochastic Thermodynamics for active matter. Europhys. Lett. 2016, 114, 30006. [Google Scholar] [CrossRef]
- Zamponi, F.; Bonetto, F.; Cugliandolo, L.F.; Kurchan, J. A fluctuation theorem for non-equilibrium relazational systems driven by external forces. J. Stat. Mech. 2005, 2005, P09013. [Google Scholar] [CrossRef]
- Speck, T.; Seifert, U. Jarzynski Relation, Fluctuation Theorems, and Stochastic Thermodynamics for Non-Markovian Processes. J. Stat. Mech. 2007, 2007, L09002. [Google Scholar] [CrossRef]
- Crisanti, A.; Puglisi, A.; Villamaina, D. Non-equilibrium and information: The role of cross-correlations. Phys. Rev. E 2012, 85, 061127. [Google Scholar] [CrossRef] [PubMed]
- Visco, P. Work fluctuations for a Brownian particle between two thermostats. J. Stat. Mech. 2006, 2006, P06006. [Google Scholar] [CrossRef]
- Puglisi, A.; Rondoni, L.; Vulpiani, A. Relevance of initial and final conditions for the fluctuation relation in Markov processes. J. Stat. Mech. 2006, 2006, P08010. [Google Scholar] [CrossRef]
- Bonetto, F.; Gallavotti, G.; Giuliani, A.; Zamponi, F. Chaotic hypothesis, fluctuation theorem, singularities. J. Stat. Phys. 2006, 123, 39. [Google Scholar] [CrossRef]
- Zakine, R.; Solon, A.; Gingrich, T.; van Wijland, F. Stochastic Stirling Engine Operating in Contact with Active Baths. Entropy 2017, 19, 193. [Google Scholar] [CrossRef]
- Oono, Y.; Paniconi, M. Steady state thermodynamics. Prog. Theor. Phys. Suppl. 1998, 130, 29–44. [Google Scholar] [CrossRef]
- Hatano, T.; Sasa, S. Steady-state thermodynamics of Langevin systems. Phys. Rev. Lett. 2001, 86, 3463–3466. [Google Scholar] [CrossRef] [PubMed]
- Bertini, L.; Sole, A.D.; Gabrielli, D.; Jona-Lasinio, G.; Landim, C. Macroscopic fluctuation theory. Rev. Mod. Phys. 2015, 87, 593–636. [Google Scholar] [CrossRef]
- Maes, C.; Netocný, K. A Nonequilibrium Extension of the Clausius Heat Theorem. J. Stat. Phys. 2014, 154, 188–203. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puglisi, A.; Marini Bettolo Marconi, U. Clausius Relation for Active Particles: What Can We Learn from Fluctuations. Entropy 2017, 19, 356. https://doi.org/10.3390/e19070356
Puglisi A, Marini Bettolo Marconi U. Clausius Relation for Active Particles: What Can We Learn from Fluctuations. Entropy. 2017; 19(7):356. https://doi.org/10.3390/e19070356
Chicago/Turabian StylePuglisi, Andrea, and Umberto Marini Bettolo Marconi. 2017. "Clausius Relation for Active Particles: What Can We Learn from Fluctuations" Entropy 19, no. 7: 356. https://doi.org/10.3390/e19070356
APA StylePuglisi, A., & Marini Bettolo Marconi, U. (2017). Clausius Relation for Active Particles: What Can We Learn from Fluctuations. Entropy, 19(7), 356. https://doi.org/10.3390/e19070356