Stochastic Thermodynamics of Brownian Motion
Abstract
:1. Introduction
2. Non-Equilibrium Thermodynamics of Brownian Motion
2.1. Conservation of Mass
2.2. Equation of Motion
2.3. Conservation of Energy and the First Law
2.4. The Second Law
- The dissipation due to the thermodynamic force associated to diffusion, .
- The dissipation due to the conversion of potential energy into internal energy, .
- The production of entropy related to the transformation of kinetic energy into internal energy, .
3. Stochastic Thermodynamics: Extended Local Equilibrium Approach
3.1. No External Force
3.2. Overdamping Limit
4. Single Particle View
4.1. Time-Independent Potential
4.2. Overdamping Limit
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Glansdorff, P.; Prigogine, I. Thermodynamic Theory of Structure, Stability and Fluctuations; John Wiley & Sons: New York, NY, USA, 1971. [Google Scholar]
- Nicolis, G.; Prigogine, I. Self-Organization in Nonequilibrium Systems; John Wiley & Sons: New York, NY, USA, 1977. [Google Scholar]
- De Groot, S.R.; Mazur, P. Non-Equilibrium Thermodynamics; Dover Publications: Mineola, NY, USA, 2011. [Google Scholar]
- Luo, J.-L.; Van den Broeck, C.; Nicolis, G. Stability Criteria and Fluctuations around Nonequilibrium States. Z. Phys. B Condens. Matter 1984, 56, 165–170. [Google Scholar]
- Mou, C.Y.; Luo, J.-L.; Nicolis, G. Stochastic Thermodynamics of Nonequilibrium Steady States in Chemical Reaction systems. J. Chem. Phys. 1986, 84, 7011–7017. [Google Scholar] [CrossRef]
- Seifert, U. Entropy Production along a Stochastic Trajectory and an Integral Fluctuation Theorem. Phys. Rev. Lett. 2005, 95, 040602. [Google Scholar] [CrossRef] [PubMed]
- Ge, H. Extended forms of the second law for general time-dependent stochastic processes. Phys. Rev. E 2009, 80, 021137. [Google Scholar] [CrossRef] [PubMed]
- Santillán, M.; Qian, H. Irreversible thermodynamics in multiscale stochastic dynamical systems. Phys. Rev. E 2011, 83, 041130. [Google Scholar] [CrossRef] [PubMed]
- Van den Broeck, C. Stochastic thermodynamics: A brief introduction. Phys. Complex Colloids 2013, 184, 155–193. [Google Scholar]
- Van den Broeck, C.; Esposito, M. Ensemble and trajectory thermodynamics: A brief introduction. Physica A 2015, 418, 6–16. [Google Scholar] [CrossRef]
- Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 2012, 75, 126001. [Google Scholar] [CrossRef] [PubMed]
- De Decker, Y.; García Cantú Ros, A.; Nicolis, G. Extended local equilibrium approach to stochastic thermodynamics. Eur. Phys. J. Spec. Top. 2015, 224, 947–968. [Google Scholar] [CrossRef]
- De Decker, Y.; Derivaux, J.-F.; Nicolis, G. Stochastic thermodynamics of reactive systems: An extended local equilibrium approach. Phys. Rev. E 2016, 93, 042127. [Google Scholar] [CrossRef] [PubMed]
- Sekimoto, K. Stochastic Energetics; Lecture Notes in Physics; Springer: Berlin, Germany, 2010; Volume 799. [Google Scholar]
- Van Zon, R.; Cohen, E.G.D. Stationary and transient work-fluctuation theorems for a dragged Brownian particle. Phys. Rev. E 2003, 67, 046102. [Google Scholar] [CrossRef] [PubMed]
- Andrieux, D.; Gaspard, P.; Ciliberto, S.; Garnier, N.; Joubau, S.; Petrosyan, A. Entropy Production and Time Asymmetry in Nonequilibrium Fluctuations. Phys. Rev. Lett. 2007, 98, 150601. [Google Scholar] [CrossRef] [PubMed]
- Andrieux, D.; Gaspard, P.; Ciliberto, S.; Garnier, N.; Joubau, S.; Petrosyan, A. Thermodynamic time asymmetry in non-equilibrium fluctuations. J. Stat. Mech. 2008, 2008, P01002. [Google Scholar] [CrossRef]
- Tomé, T.; de Oliveira, M.J. Entropy production in irreversible systems described by a Fokker-Planck equation. Phys. Rev. E 2010, 82, 021120. [Google Scholar] [CrossRef] [PubMed]
- Tomé, T.; de Oliveira, M.J. Stochastic approach to equilibrium and nonequilibrium thermodynamics. Phys. Rev. E 2015, 91, 042140. [Google Scholar] [CrossRef] [PubMed]
- Landau, L.D.; Lifshitz, E.M. Fluid Mechanics; Pergamon Press: Oxford, UK, 1987. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions; Dover Publications Inc.: Mineola, NY, USA, 1972. [Google Scholar]
- Kotz, S.; Kozubowski, T.; Podgórski, K. The Laplace Distribution and Generalizations; Springer Science + Business Media: New York, NY, USA, 2001. [Google Scholar]
- Imparato, A.; Peliti, L.; Pesce, G.; Rusciano, G.; Sasso, A. Work and heat probability distribution of an optically driven Brownian particle: Theory and experiments. Phys. Rev. E 2007, 76, 050101. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, D.; Cherayil, B.J. Exact path-integral evaluation of the heat distribution function of a trapped Brownian oscillator. Phys. Rev. E 2010, 82, 051104. [Google Scholar] [CrossRef] [PubMed]
- Crisanti, A.; Sarracino, A.; Zannetti, M. Heat fluctuations of Brownian oscillators in nonstationary processes: Fluctuation theorem and condensation transition. Phys. Rev. E 2017, 95, 052138. [Google Scholar] [CrossRef] [PubMed]
- Jarzynski, C. Comparison of far-from-equilibrium work relations. C. R. Phys. 2007, 8, 495–506. [Google Scholar] [CrossRef]
- Bedeaux, D.; Mazur, P. Brownian motion and fluctuating hydrodynamics. Physica 1974, 76, 247–258. [Google Scholar] [CrossRef]
- Mazonka, O.; Jarzynski, C. Exactly solvable model illustrating far-from-equilibrium predictions. arXiv, 1999; arXiv:cond-mat/9912121. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicolis, G.; De Decker, Y. Stochastic Thermodynamics of Brownian Motion. Entropy 2017, 19, 434. https://doi.org/10.3390/e19090434
Nicolis G, De Decker Y. Stochastic Thermodynamics of Brownian Motion. Entropy. 2017; 19(9):434. https://doi.org/10.3390/e19090434
Chicago/Turabian StyleNicolis, Grégoire, and Yannick De Decker. 2017. "Stochastic Thermodynamics of Brownian Motion" Entropy 19, no. 9: 434. https://doi.org/10.3390/e19090434
APA StyleNicolis, G., & De Decker, Y. (2017). Stochastic Thermodynamics of Brownian Motion. Entropy, 19(9), 434. https://doi.org/10.3390/e19090434