Fractional Time Fluctuations in Viscoelasticity: A Comparative Study of Correlations and Elastic Moduli
Abstract
:1. Introduction
2. Model Formulation
2.1. Hydrodynamic Fluctuations
2.2. Power Law Viscoelasticity
2.3. Transverse Velocity Correlation
3. Time Fractional Derivatives
4. Dynamic Shear Modulus
5. Discussion
Author Contributions
Conflicts of Interest
References
- Zwanzig, R. Time-correlation functions and transport coefficients in statistical mechanics. Annu. Rev. Phys. Chem. 1964, 16, 67–102. [Google Scholar] [CrossRef]
- Onsager, L.; Machlup, S. Fluctuations and Irreversible Processes. Phys. Rev. 1953, 91, 1505. [Google Scholar] [CrossRef]
- Green, M.S. Markoff Random Processes and the Statistical Mechanics of Time-Dependent Phenomena. II. Irreversible Processes in Fluids. J. Chem. Phys. 1954, 22, 398–413. [Google Scholar] [CrossRef]
- Fox, R.F. The generalized Langevin equation with Gaussian fluctuations. J. Math. Phys. 1977, 18, 2331–2336. [Google Scholar] [CrossRef]
- Fox, R.F. Gaussian stochastic processes in physics. Phys. Rep. 1978, 48, 179–283. [Google Scholar] [CrossRef]
- Grigolini, P.; Rocco, A.; West, B.J. Fractional calculus as a macroscopic manifestation of randomness. Phys. Rev. E 1999, 59, 2603–2613. [Google Scholar] [CrossRef]
- West, B.J. Fractional calculus view of complexity: A tutorial. Rev. Mod. Phys. 2014, 86, 1169–1184. [Google Scholar] [CrossRef]
- West, B.J. Physiology, Promiscuity and Prophecy at the Millennium: A Tale of Tails; Studies of Nonlinear Phenomena in the Life Sciences; World Scientific: Singapore, 1999; Volume 7. [Google Scholar]
- Rodríguez, R.F.; Fujioka, J.; Salinas-Rodríguez, E. Fractional fluctuations effects on the light scattered by a viscoelastic suspension. Phys. Rev. E 2013, 88, 022154. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, R.F.; Fujioka, J.; Salinas-Rodríguez, E. Fractional correlation functions in simple viscoelastic liquids. Physica A 2015, 427, 326–340. [Google Scholar] [CrossRef]
- Rodríguez, R.F.; Fujioka, J. Generalized hydrodynamic correlations and fractional memory functions. J. Non-Equilib. Thermodyn. 2015, 40, 295–305. [Google Scholar] [CrossRef]
- Glöckle, W.G.; Nonnenmacher, T.F. Fox function representation of non-Debye relaxation processes. J. Stat. Phys. 1993, 71, 741–757. [Google Scholar] [CrossRef]
- Rocco, A.; West, B.J. Fractional calculus and the evolution of fractal phenomena. Physica A 1999, 265, 535–546. [Google Scholar] [CrossRef]
- Uchaikin, V.V. Fractional Derivatives for Physicists and Engineers; Springer: Berlin, Germany, 2013; Volume I. [Google Scholar]
- Santamaría-Holek, I.; Rubí, J.M.; Gadomski, A. Thermokinetic approach of single particles and clusters involving anomalous diffusion under viscoelastic response. J. Phys. Chem. B 2007, 111, 2293–2298. [Google Scholar] [CrossRef] [PubMed]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity; Imperial College Press: London, UK, 2010. [Google Scholar]
- Ferry, J.C. Viscoelastic Properties of Polymers, Chapter 1, 3rd ed.; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Wang, C.H.; Fischer, E.W. Density fluctuations, dynamic light scattering, longitudinal compliance, and stress modulus in a viscoelastic medium. J. Chem. Phys. 1985, 82, 632–639. [Google Scholar] [CrossRef]
- Wang, C.H. Depolarized Raleigh-Brillouin scattering of shear waves and molecular reorientation in a viscoelastic liquid. Mol. Phys. 1980, 41, 541–565. [Google Scholar] [CrossRef]
- Kubo, R.; Toda, M.; Hashitsume, N. Statistical Physics II, Nonequilibrium Statistical Mechanics; Springer: Berlin, Germany, 1985. [Google Scholar]
- Leptos, K.C.; Guasto, J.S.; Gollub, J.P.; Pesei, A.I.; Goldstein, R.E. Dynamics of enhanced tracer diffusion in suspension of swimming eukaryotic microorganisms. Phys. Rev. Lett. 2009, 103, 198103. [Google Scholar] [CrossRef] [PubMed]
- Eckardt, B.; Zammert, S. Non-normal tracer diffusion from stirring by swimming microorganisms. Eur. Phys. J. E 2012, 35, 96–97. [Google Scholar] [CrossRef] [PubMed]
- Zaid, I.M.; Dunkel, J.; Yeomans, J.M. Lévy fluctuations and mixing in dilute suspensions NASA/TP-1999-209424/REVI; Tof algae and bacteria. J. R. Soc. Interface 2011, 8, 1314–1331. [Google Scholar] [CrossRef] [PubMed]
- Jaishankar, A.; McKinley, G.H. Power-law rheology in the bulk and at the interface: Quasi-properties and fractional constitutive equations. Proc. R. Soc. A 2013, 469. [Google Scholar] [CrossRef]
- Lorenzo, C.F.; Hartley, T.T. Generalized Functions for the Fractional Calculus; NASA/TP-1999-209424/REVI; The National Aeronautics and Space Administration: Washington, DC, USA, 1999; pp. 1–17.
- Chhabra, R.P.; Uhlherr, P.H.T.; Boger, D.V. The influence of fluid elasticity on the drag coefficient for creeping flow around a sphere. J. Non-Newton. Fluid Mech. 1980, 6, 187–199. [Google Scholar] [CrossRef]
- Greaves, G.N.; Greer, A.L.; Lakes, R.S.; Rouxel, T. Poisson’s ratio and modern materials. Nat. Mater. 2011, 10, 823–837. [Google Scholar] [CrossRef] [PubMed]
- Caputo, M.; Cametti, C. Diffusion with memory in two cases of biological interest. J. Theor. Biol. 2008, 254, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Podlubny, L. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Kilbas, A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Beach: Amsterdam, The Netherlands, 1993; pp. 483–498. [Google Scholar]
- Berne, B.J.; Pecora, R. Dynamic Light Scattering; Wiley: New York, NY, USA, 1976; Chapter 10. [Google Scholar]
- Rodríguez, R.F.; Fujioka, J.; Salinas-Rodríguez, E. Fractional effects on the light scattering properties of a simple binary mixture. J. Non-Equilib. Thermodyn. 2017. [Google Scholar] [CrossRef]
- Gadomski, A.; Kruszewska, N. On clean grain-boundaries involving growth of nonequilibrium crystalline-amorphous superconducting materials addressed by a phenomenological viewpoint. Eur. Phys. J. B 2012, 85, 416–428. [Google Scholar] [CrossRef]
- Gadomski, A. Nucleation-and-growth problem in model lipid membranes undergoing subgel phase transitions is a problem of time scale. Eur. Phys. J. B 1999, 9, 569–571. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez, R.F.; Salinas-Rodríguez, E.; Fujioka, J. Fractional Time Fluctuations in Viscoelasticity: A Comparative Study of Correlations and Elastic Moduli. Entropy 2018, 20, 28. https://doi.org/10.3390/e20010028
Rodríguez RF, Salinas-Rodríguez E, Fujioka J. Fractional Time Fluctuations in Viscoelasticity: A Comparative Study of Correlations and Elastic Moduli. Entropy. 2018; 20(1):28. https://doi.org/10.3390/e20010028
Chicago/Turabian StyleRodríguez, Rosalío F., Elizabeth Salinas-Rodríguez, and Jorge Fujioka. 2018. "Fractional Time Fluctuations in Viscoelasticity: A Comparative Study of Correlations and Elastic Moduli" Entropy 20, no. 1: 28. https://doi.org/10.3390/e20010028
APA StyleRodríguez, R. F., Salinas-Rodríguez, E., & Fujioka, J. (2018). Fractional Time Fluctuations in Viscoelasticity: A Comparative Study of Correlations and Elastic Moduli. Entropy, 20(1), 28. https://doi.org/10.3390/e20010028