Entropy-Based Structural Health Monitoring System for Damage Detection in Multi-Bay Three-Dimensional Structures
Abstract
:1. Introduction
2. SHM Algorithm
2.1. SampEn
2.2. MSE
2.3. Cross-SampEn
2.4. MSCE and DI
3. Numerical Simulation
Damage Database
4. Results and Discussion
4.1. Single-Story, Single-Bay, Multidirectional Damage: Case 4 (4XY-L)
4.2. Single-Story, Multi-Bay, Multidirectional Damage: Case 8 (3X-R & 3Y-C)
4.3. Two-Story, Single-Bay, Single-Direction Damage: Case 11 (1Y-R & 5Y-R)
4.4. Two-Story, Multi-Bay, Single-Direction Damage: Case 16 (2X-L & C, 6X-C & R)
4.5. Multistory, Multi-Bay, Single-Direction Damage: Case 23 (3X-L & 4X-C & 5X-R)
4.6. Multistory, Multi-Bay, Multidirectional Damage: Case 26 (7XY-R & 4Y-L & 6Y-C)
4.7. General Discussion
4.7.1. Damage Location
4.7.2. Damaged Bay Identification
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Friswell, M.; Penny, J.; Garvey, S. Parameter subset selection in damage location. Inverse Probl. Eng. 1997, 5, 189–215. [Google Scholar] [CrossRef]
- Doebling, S.W.; Farrar, C.R.; Prime, M.B. A summary review of vibration-based damage identification methods. Shock Vib. Dig. 1998, 30, 91–105. [Google Scholar] [CrossRef]
- Wahab, M.A.; De Roeck, G. Damage detection in bridges using modal curvatures: Application to a real damage scenario. J. Sound Vib. 1999, 226, 217–235. [Google Scholar] [CrossRef]
- Maeck, J.; Wahab, M.A.; Peeters, B.; De Roeck, G.; De Visscher, J.; De Wilde, W.; Ndambi, J.M.; Vantomme, J. Damage identification in reinforced concrete structures by dynamic stiffness determination. Eng. Struct. 2000, 22, 1339–1349. [Google Scholar] [CrossRef]
- Chang, P.C.; Flatau, A.; Liu, S. Health monitoring of civil infrastructure. Struct. Health Monit. 2003, 2, 257–267. [Google Scholar] [CrossRef]
- Lam, H.F.; Yang, J. Bayesian structural damage detection of steel towers using measured modal parameters. Earthq. Struct. 2015, 8, 935–956. [Google Scholar] [CrossRef]
- Chen, Z.; Fang, H.; Ke, X.; Zeng, Y. A new method to identify bridge bearing damage based on Radial Basis Function Neural Network. Earthq. Struct. 2016, 11, 841–859. [Google Scholar] [CrossRef]
- Clausius, R. On several convenient forms of the fundamental equations of the mechanical theory of heat. Ann. Phys. 1865, 201, 352–400. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication, Part I, Part II. Bell Syst. Tech. J. 1948, 27, 623–656. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. New metric invariant of transitive dynamical systems and endomorphisms of Lebesgue spaces. Dokl. Russ. Acad. Sci. 1958, 119, 861–864. [Google Scholar]
- Sinai, Y.G. On the notion of entropy of a dynamical system. Dokl. Akad. Nauk. SSSR 1959, 124, 768–771. [Google Scholar]
- Pincus, S.M.; Gladstone, I.M.; Ehrenkranz, R.A. A regularity statistic for medical data analysis. J. Clin. Monit. Comput. 1991, 7, 335–345. [Google Scholar] [CrossRef]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [PubMed]
- An, Y.-H.; Ou, J.-P. Structural damage localisation for a frame structure from changes in curvature of approximate entropy feature vectors. Nondestruct. Test. Eval. 2014, 29, 80–97. [Google Scholar] [CrossRef]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol.-Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 2002, 89, 068102. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of biological signals. Phys. Rev. E 2005, 71, 021906. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xiong, G.; Liu, H.; Zou, H.; Guo, W. Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference. Expert Syst. Appl. 2010, 37, 6077–6085. [Google Scholar] [CrossRef]
- Liu, H.; Han, M. A fault diagnosis method based on local mean decomposition and multi-scale entropy for roller bearings. Mech. Mach. Theory 2014, 75, 67–78. [Google Scholar] [CrossRef]
- Pincus, S.; Singer, B.H. Randomness and degrees of irregularity. Proc. Natl. Acad. Sci. USA 1996, 93, 2083–2088. [Google Scholar] [CrossRef] [PubMed]
- Fabris, C.; De Colle, W.; Sparacino, G. Voice disorders assessed by (cross-) sample entropy of electroglottogram and microphone signals. Biomed. Signal Process. Control 2013, 8, 920–926. [Google Scholar] [CrossRef]
- Lin, T.K.; Liang, J.C. Application of multi-scale (cross-) sample entropy for structural health monitoring. Smart Mater. Struct. 2015, 24, 085003. [Google Scholar] [CrossRef]
- Lin, T.K.; Tseng, T.C.; Lainez, A.G. Three-dimensional structural health monitoring based on multiscale cross-sample entropy. Earthq. Struct. 2017, 12, 673–687. [Google Scholar]
- Wimarshana, B.; Wu, N.; Wu, C. Crack identification with parametric optimization of entropy & wavelet transformation. Struct. Monit. Maint. 2017, 4, 33–52. [Google Scholar]
- Guan, X.; Wang, Y.; He, J. A probabilistic damage identification method for shear structure components based on Cross-Entropy optimizations. Entropy 2017, 19, 27. [Google Scholar] [CrossRef]
Parameter | Setting |
---|---|
Constitutive equation | Linear elastic |
Material | A36 steel |
DOF of the foundation | Fixed in 6 DOF |
Finite element for column, beam and bracing | Beam |
Integration method | Direct-integration time-history analysis |
Duration | 150 s |
Ambient vibration | White noise of 1 mW power |
Case Number | Damage Group | Damaged Floor, Direction and Bay |
---|---|---|
1 | Single-story, single-bay, single-direction | 5X-L |
2 | 3Y-C | |
3 | 7Y-R | |
4 | Single-story, single-bay, multidirectional | 4XY-L |
5 | 6XY-C | |
6 | Single-story, multi-bay, single-direction | 2X-L & 2X-C |
7 | 5Y-L & 5Y-C & 5Y-R | |
8 | Single-story, multi-bay, multidirectional | 3X-R & 3Y-C |
9 | 6X-L & 6Y-R | |
10 | Two-story, single-bay, single-direction | 3X-L & 6X-L |
11 | 1Y-R & 5Y-R | |
12 | Two-story, single-bay, multidirectional | 4X-C & 7Y-C |
13 | 2XY-R & 3XY-R | |
14 | Two-story, multi-bay, single-direction | 5X-R & 7X-L |
15 | 2Y-C & 4Y-R | |
16 | 2X-L & C, 6X-C & R | |
17 | Two-story, multi-bay, multidirectional | 4X-R & 2Y-L |
18 | 6XY-R & 7XY-L | |
19 | Multistory, single-bay, single-direction | 3X-L & 4X-L & 6X-L |
20 | 1Y-R & 4Y-R & 7Y-R | |
21 | Multistory, single-bay, multidirectional | 4X-L & 5Y-L & 6Y-L |
22 | 1XY-C & 3XY-C & 5XY-C | |
23 | Multistory, multi-bay, single-direction | 3X-L & 4X-C & 5X-R |
24 | 6Y-L & 2Y-C & 7Y-R | |
25 | Multistory, multi-bay, multidirectional | 1X-R & 2X-R & 1Y-L |
26 | 7XY-R & 4Y-L & 6Y-C |
Case No. | Damage Case | Frequency (Hz) | |||
---|---|---|---|---|---|
Mode 1(X) | Mode 2(X) | Mode 1(Y) | Mode 2(Y) | ||
Undamaged (UN) | 6.5 | 19.52 | 2.69 | 11.56 | |
1 | 5X-L | 6.41 | 18.84 | 2.69 | 11.56 |
2 | 3Y-C | 6.50 | 19.53 | 2.65 | 11.55 |
3 | 7Y-R | 6.50 | 17.97 | 2.68 | 11.02 |
4 | 4XY-L | 6.12 | 18.69 | 2.60 | 11.32 |
5 | 6XY-C | 6.44 | 18.58 | 2.68 | 11.15 |
6 | 2X-L & 2X-C | 5.78 | 18.93 | 2.69 | 11.57 |
7 | 5Y-L & 5Y-C & 5Y-R | 6.27 | 17.41 | 2.44 | 8.88 |
8 | 3X-R & 3Y-C | 6.32 | 19.52 | 2.65 | 11.55 |
9 | 6X-L & 6Y-R | 6.43 | 17.02 | 2.66 | 10.48 |
10 | 3X-L & 6X-L | 6.29 | 18.81 | 2.69 | 11.57 |
11 | 1Y-R & 5Y-R | 5.88 | 17.55 | 2.49 | 9.21 |
12 | 4X-C & 7Y-C | 6.32 | 19.09 | 2.69 | 11.36 |
13 | 2XY-R & 3XY-R | 5.41 | 18.23 | 2.39 | 10.86 |
14 | 5X-R & 7X-L | 6.42 | 18.55 | 2.69 | 11.56 |
15 | 2Y-C & 4Y-R | 6.3 | 19.16 | 2.55 | 11.02 |
16 | 2X-L & C, 6X-C & R | 5.67 | 16.21 | 2.69 | 11.57 |
17 | 4X-R & 2Y-L | 5.91 | 18.66 | 2.57 | 11.00 |
18 | 6XY-R & 7XY-L | 6.43 | 15.50 | 2.66 | 10.19 |
19 | 3X-L & 4X-L & 6X-L | 6.13 | 18.52 | 2.69 | 11.57 |
20 | 1Y-R & 4Y-R & 7Y-R | 5.78 | 16.13 | 2.45 | 9.33 |
21 | 4X-L & 5Y-L & 6Y-L | 6.29 | 17.56 | 2.59 | 9.96 |
22 | 1XY-C & 3XY-C & 5XY-C | 5.92 | 18.07 | 2.57 | 10.54 |
23 | 3X-L & 4X-C & 5X-R | 6.12 | 18.46 | 2.70 | 11.57 |
24 | 6Y-L & 2Y-C & 7Y-R | 6.49 | 16.44 | 2.60 | 9.94 |
25 | 1X-R & 2X-R & 1Y-L | 5.67 | 18.09 | 2.56 | 10.40 |
26 | 7XY-R & 4Y-L & 6Y-C | 6.27 | 15.94 | 2.59 | 10.52 |
Case Number | Damage Group | Damage Case | Damage Index (X-Direction) | Damage Index (Y-Direction) |
---|---|---|---|---|
1 | Single-story, | 5X-L | OK | OK |
2 | single-bay, | 3Y-C | OK | OK |
3 | single-direction | 7Y-R | OK | 1F |
4 | Single-story, single- | 4XY-L | OK | OK |
5 | bay, multi-directional | 6XY-C | 6F | OK |
6 | Single-story, multi- | 2X-L & 2X-C | 2F | OK |
7 | bay, single-direction | 5Y-L & 5Y-C & 5Y-R | OK | 5F |
8 | Single-story, multi- | 3X-R & 3Y-C | OK | OK |
9 | bay, multidirectional | 6X-L & 6Y-R | OK | 1F |
10 | Two-story, single-bay, | 3X-L & 6X-L | OK | OK |
11 | single-direction | 1Y-R & 5Y-R | OK | OK |
12 | Two-story, single-bay, | 4X-C & 7Y-C | OK | OK |
13 | multidirectional | 2XY-R & 3XY-R | OK | |
14 | Two-story, | 5X-R & 7X-L | OK | OK |
15 | multi-bay, | 2Y-C & 4Y-R | OK | 1F & 2F |
16 | single-direction | 2X-L & C, 6X-C & R | 2F & 6F | OK |
17 | Two-story, multi- | 4X-R & 2Y-L | OK | 1F |
18 | bay, multidirectional | 6XY-R & 7XY-L | OK | 1F & 2F |
19 | Multistory, single- | 3X-L & 4X-L & 6X-L | 6F | OK |
20 | bay, single-direction | 1Y-R & 4Y-R & 7Y-R | OK | OK |
21 | Multistory, single- | 4X-L & 5Y-L & 6Y-L | OK | 1F & 2F |
22 | bay, multidirectional | 1XY-C & 3XY-C & 5XY-C | 1F & 5F | 1F & 3F |
23 | Multistory, multi-bay, | 3X-L & 4X-C & 5X-R | 5F | OK |
24 | single-direction | 6Y-L & 2Y-C & 7Y-R | OK | 1F & 2F |
25 | Multistory, multi-bay, | 1X-R & 2X-R & 1Y-L | 1F & 2F | OK |
26 | multidirectional | 7XY-R & 4Y-L & 6Y-C | OK | 1F & 6F |
Direction | True Positives | False Positives | True Negatives | False Negatives | Precision | Recall |
---|---|---|---|---|---|---|
X | 25 | 0 | 151 | 6 | 100% | 81% |
Y | 30 | 11 | 139 | 2 | 73% | 94% |
Total | 55 | 11 | 290 | 8 | 83% | 87% |
Direction | Damage Instances | Correctly Identified Bay | Accuracy |
---|---|---|---|
X | 34 | 24 | 71% |
Y | 34 | 27 | 79% |
Total | 68 | 51 | 75% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, T.-K.; Laínez, A.G. Entropy-Based Structural Health Monitoring System for Damage Detection in Multi-Bay Three-Dimensional Structures. Entropy 2018, 20, 49. https://doi.org/10.3390/e20010049
Lin T-K, Laínez AG. Entropy-Based Structural Health Monitoring System for Damage Detection in Multi-Bay Three-Dimensional Structures. Entropy. 2018; 20(1):49. https://doi.org/10.3390/e20010049
Chicago/Turabian StyleLin, Tzu-Kang, and Ana Gabriela Laínez. 2018. "Entropy-Based Structural Health Monitoring System for Damage Detection in Multi-Bay Three-Dimensional Structures" Entropy 20, no. 1: 49. https://doi.org/10.3390/e20010049
APA StyleLin, T. -K., & Laínez, A. G. (2018). Entropy-Based Structural Health Monitoring System for Damage Detection in Multi-Bay Three-Dimensional Structures. Entropy, 20(1), 49. https://doi.org/10.3390/e20010049