Photonic Discrete-time Quantum Walks and Applications
Abstract
:1. Introduction
2. Discrete-Time Quantum Walks
3. Photonic Implementations
3.1. Spatial Multiplexed Discrete-time Quantum Walk
3.2. Time Multiplexed Discrete-Time Quantum Walk
3.3. Discrete-Time Quantum Walk in Transverse Propagation Modes using Spatial Light Modulators
3.3.1. Preparation Module
3.3.2. One-Step Module
4. Applications
4.1. Applications via Spatial Multiplexed DTQW: Split-Step Quantum Walk
4.2. Applications via Temporal Multiplexed DTQW: Quantum Walk with Non-Commuting Rotations
5. Geometric Zak Phase Calculation
5.1. Split-Step Quantum Walk
5.2. Quantum Walk with Non-Commuting Rotations
5.3. Quantum Walk with Non-Local Coin Operation
5.4. Applications via Spatial Light Modulators: Source of Non-Local Walker-Coin States Based on Two-Photon Hybrid Entanglement
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kempe, J. Quantum random walks: An introductory overview. Cont. Phys. 2003, 44, 307. [Google Scholar] [CrossRef]
- Kitagawa, T; Broome, M.A.; Fedrizzi, A.; Rudner, M.S.; Berg, E.; Kassal, I.; Aspuru-Guzik, A.; Demler, E.; White, A.G. Observation of topologically protected bound states in photonic quantum walks. Nat. Commun. 2012, 3, 882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitagawa, T; Rudner, M.S.; Berg, E.; Demler, E. Exploring topological phases with quantum walks. Phys. Rev. A 2010, 82, 033429. [Google Scholar] [CrossRef] [Green Version]
- Aharonov, Y.; Davidovich, L.; Zagury, N. Quantum random walks. Phys. Rev. A 1993, 48, 1687. [Google Scholar] [CrossRef] [PubMed]
- Crespi, A.; Osellame, R.; Ramponi, R.; Giovannetti, V.; Fazio, R.; Sansoni, L.; Nicola, F.D.; Sciarrino, F.; Mataloni, P. Anderson localization of entangled photons in an integrated quantum walk. Nat. Photon. 2013, 7, 322. [Google Scholar] [CrossRef]
- Genske, M.; Alt, W.; Steffen, A.; Werner, A.H.; Werner, R.F.; Meschede, D.; Alberti, A. Electric quantum walks with individual atoms. Phys. Rev. Lett. 2013, 110, 190601. [Google Scholar] [CrossRef] [PubMed]
- Obuse, H.; Kawakami, N. Topological phases and delocalization of quantum walks in random environments. Phys. Rev. B 2011, 84, 195139. [Google Scholar] [CrossRef]
- Shikano, Y.; Chisaki, K.; Segawa, E.; Konno, N. Emergence of randomness and arrow of time in quantum walks. Phys. Rev. A 2010, 81, 062129. [Google Scholar] [CrossRef]
- Asbóth, J.K. Symmetries, topological phases, and bound states in the one-dimensional quantum walk. Phys. Rev. B 2012, 86, 195414. [Google Scholar] [CrossRef]
- Obuse, H.; Asboth, J.K.; Nishimura, Y.; Kawakami, N. Unveiling hidden topological phases of a one-dimensional Hadamard quantum walk. Phys. Rev. B 2015, 92, 045424. [Google Scholar] [CrossRef]
- Cedzich, C.; Grunbaum, F.A.; Stahl, C.; Velázquez, L.; Werner, A.H.; Werner, R.F. Bulk-edge correspondence of one-dimensional quantum walks. J. Phys. A Math. Theor. 2016, 49, 21LT01. [Google Scholar] [CrossRef]
- Wojcik, A.; Luczak, T.; Kurzynski, P.; Grudka, A.; Gdala, T.; Bednarska-Bzdega, M. Trapping a particle of a quantum walk on the line. Phys. Rev. A 2012, 85, 012329. [Google Scholar] [CrossRef]
- Moulieras, S.; Lewenstein, M.; Puentes, G. Entanglement engineering and topological protection in discrete-time quantum walks. J. Phys. B 2013, 46, 104005. [Google Scholar] [CrossRef]
- Beenakker, C.; Kouwenhoven, L. A road to reality with topological superconductors. Nat. Phys. 2016, 12, 618. [Google Scholar] [CrossRef]
- Huber, S.D. Topological mechanics. Nat. Phys. 2016, 12, 621. [Google Scholar] [CrossRef]
- Peano, V.; Brendel, C.; Schmidt, M.; Marquardt, F. Topological phases of sound and light. Phys. Rev. X 2015, 5, 031011. [Google Scholar] [CrossRef]
- Lu, L.; Joannopoulos, J; Solijacic, M. Topological states in photonic systems. Nat. Phys. 2016, 12, 626. [Google Scholar] [CrossRef]
- Xiao, M.; Ma, G.C.; Yang, Z.Y.; Sheng, P.; Zhang, Z.Q.; Chan, C.T. Geometric phase and band inversion in periodic acoustic systems. Nat. Phys. 2015, 11, 240. [Google Scholar] [CrossRef]
- Bose, S. Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 2003, 91, 207901. [Google Scholar] [CrossRef] [PubMed]
- Christandl, M.; Datta, N.; Ekert, A.; Landahl, A.J. Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 2004, 92, 187902. [Google Scholar] [CrossRef] [PubMed]
- Plenio, M.B.; Huelga, S.F. Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys. 2008, 10, 113019. [Google Scholar] [CrossRef] [Green Version]
- Spring, J.B.; Metcalf1, B.J.; Humphreys, P.C.; Kolthammer, W.S.; Jin, X.M.; Barbieri, M.; Datta, A.; Thomas-Peter, N.; Langford, N.K.; Kundys, D.; et al. Boson sampling on a photonic chip. Science 2013, 339, 798–801. [Google Scholar] [CrossRef] [PubMed]
- Broome, M.A.; Fedrizzi, A.; Rahimi-Keshari, S.; Dove, J.; Aaronson, S.; Ralph, T.C.; White, A.G. Photonic boson sampling in a tunable circuit. Science 2013, 339, 6121. [Google Scholar] [CrossRef] [PubMed]
- Tillmann, M.; Dakic, B.; Heilmann, R.; Nolte, S. Alexander Szameit and Philip Walther, Experimental boson sampling. Nat. Photon. 2013, 7, 540. [Google Scholar] [CrossRef]
- Crespi, A.; Osellame, R.; Ramponi, R.; Brod, D.J.; Galvão, E.F.; Spagnolo, N.; Vitelli, C.; Maiorino, E.; Mataloni, P.; Sciarrino, F. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photon. 2013, 7, 545–549. [Google Scholar] [CrossRef]
- Spagnolo, N.; Vitelli, C.; Bentivegna, M.; Brod, D.J.; Crespi, A.; Flamini, F.; Giacomini, S.; Milani, G.; Ramponi, R.; Mataloni, P.; et al. Efficient experimental validation of photonic boson sampling. Nat. Photon. 2014, 8, 615. [Google Scholar] [CrossRef]
- Carolan, J.; Meinecke, J.D.A.; Shadbolt, P.J.; Russell, N.J.; Ismail, N.; Wörhoff, K.; Rudolph, T.; Thompson, M.G.; O’Brien, J.L.; Matthews, J.C.F.; et al. On the experimental verification of quantum complexity in linear optics. Nat. Photon. 2014, 8, 621. [Google Scholar] [CrossRef]
- Childs, A.M. Universal computation by quantum walk. Phys. Rev. Lett. 2009, 102, 180501. [Google Scholar] [CrossRef] [PubMed]
- Aiello, A.; Puentes, G.; Voigt, D.; Woerdman, J.P. Maximally entangled mixed-state generation via local operations. Phys. Rev. A 2007, 75, 062118. [Google Scholar] [CrossRef]
- Puentes, G.; Voigt, D.; Aiello, A.; Woerdman, J.P. Universality in depolarized light scattering. Opt. Lett. 2006, 30, 3216–3218. [Google Scholar] [CrossRef]
- Peruzzo, A.; Lobino, M.; Matthews, J.C.F.; Matsuda, N.; Politi, A.; Poulios, K.; Zhou, X.Q.; Lahini, Y.; Ismail, N.; Wörhoff, K.; et al. Quantum walks of correlated photons. Science 2010, 329, 1500–1503. [Google Scholar] [CrossRef] [PubMed]
- Poulios, K.; Keil, R.; Fry, D.; Meinecke, J.D.A.; Matthews, J.C.F.; Politi, A.; Lobino, M.; Gräfe, M.; Heinrich, M.; Nolte, S.; et al. Quantum walks of correlated photon pairs in two-dimensional waveguide arrays. Phys. Rev. Lett. 2014, 112, 143604. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, A.; Gabris, A.; Rohde, P.P.; Laiho, K.; Stefanak, M.; Potocek, V.; Hamilton, C.; Jex, I.; Silberhorn, C. A 2D quantum walk simulation of two-particle dynamics. Science 2012, 336, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Broome, M.A.; Fedrizzi, A.; Lanyon, B.P.; Kassal, I.; Aspuru-Guzik, A.; White, A.G. Discrete Single-Photon Quantum Walks with Tunable Decoherence. Phys. Rev. Lett. 2010, 104, 153602. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, A.; Cassemiro, K.N.; Potoček, V.; Gabris, A.; Jex, I.; Silberhorn, C. Decoherence and disorder in quantum walks: From ballistic spread to localization. Phys. Rev. Lett. 2011, 106, 180403. [Google Scholar] [CrossRef] [PubMed]
- Puentes, G. Topology and Holonomy in Discrete-time Quantum Walks. Crystals 2017, 7, 122. [Google Scholar] [CrossRef]
- Nielsen, M.; Chuang, I. Quantum Computation and Quantum Information; Cambridge University Press: London, UK, 2000. [Google Scholar]
- Schreiber, A.; Cassemiro, K.N.; Potocek, V.; Gábris, A.; Mosley, P.J.; Andersson, E.; Jex, I.; Silberhorn, C. Photons walking the line: A quantum walk with adjustable coin operations. Phys. Rev. Lett. 2010, 104, 050502. [Google Scholar] [CrossRef] [PubMed]
- Zahringer, F.; Kirchmair, G.; Gerritsma, R.; Solano, E.; Blatt, R.; Roos, C.F. Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett. 2010, 104, 100503. [Google Scholar] [CrossRef] [PubMed]
- Rudner, M.S.; Lindner, N.H.; Berg, E.; Levin, M. Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X 2013, 3, 031005. [Google Scholar] [CrossRef]
- Sansoni, L.; Sciarrino, F.; Vallone, G.; Mataloni, P.; Crespi, A.; Ramponi, R.; Osellame, R. Two-Particle Bosonic-Fermionic Quantum Walk via Integrated Photonics. Phys. Rev. Lett. 2012, 108, 010502. [Google Scholar] [CrossRef] [PubMed]
- Francisco, D.; Iemmi, C.; Paz, J.P.; Ledesma, S. Simulating a quantum walk with classical optics. Phys. Rev. A 2006, 74, 052327. [Google Scholar] [CrossRef]
- Lazarev, G.; Hermerschmidt, A.; Krueger, S.; Osten, S. LCOS spatial light modulators: Trends and applications. In Optical Imaging and Metrology: Advanced Technologies, 1st ed.; Osten, W., Reingand, N., Eds.; Wiley-VCH: Weinheim, Germany, 2012; pp. 1–29. [Google Scholar]
- Puentes, G.; Mela, C.L.; Ledesma, S.; Iemmi, C.; Paz, J.P.; Saraceno, M. Optical simulation of quantum algorithms using programmable liquid-crystal displays. Phys. Rev. A 2004, 69, 042319. [Google Scholar] [CrossRef]
- Marques, B.; Matoso, A.A.; Pimenta, W.M.; Gutiérrez-Esparza, A.J.; Santos, M.F.; Pádua, S. Experimental simulation of decoherence in photonics qudits. Sci. Rep. 2015, 5, 16049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solís-Prosser, M.A.; Fernandes, M.F.; Jiménez, O.; Delgado, A.; Neves, L. Experimental Minimum-Error Quantum-State Discrimination in High Dimensions. Phys. Rev. Lett. 2017, 118, 100501. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, F.; Fickler, R.; Boyd, R.W.; Karimi, E. High-dimensional quantum cloning and applications to quantum hacking. Sci. Adv. 2017, 3, e1601915. [Google Scholar] [CrossRef] [PubMed]
- Solís-Prosser, M.A.; Arias, A.; Varga, J.J.M.; Rebón, L.; Ledesma, S.; Iemmi, C.; Neves, L. Preparing arbitrary pure states of spatial qudits with a single phase-only spatial light modulator. Opt. Lett. 2013, 38, 4762. [Google Scholar] [CrossRef] [PubMed]
- Moreno, I.; Velásquez, P.; Fernández-Pousa, C.R.; Sánchez-López, M.M.; Mateos, F. Jones matrix method for predicting and optimizing the optical modulation properties of a liquid-crystal display. J. Appl. Phys. 2003, 94, 3697. [Google Scholar] [CrossRef]
- Davis, J.A.; McNamara, D.E.; Cottrell, D.M.; Sonehara, T. Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator. Appl. Opt. 2000, 39, 1549. [Google Scholar] [CrossRef] [PubMed]
- Moreno, I.; Martínez, J.L.; Davis, J.A. Two-dimensional polarization rotator using a twisted-nematic liquid-crystal display. Appl. Opt. 2007, 46, 881. [Google Scholar] [CrossRef] [PubMed]
- Berry, M.V. Classical adiabatic angles and quantal adiabatic phase. J. Phys. A 1985, 18, 15. [Google Scholar] [CrossRef]
- Hannay, J. Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian. J. Phys. A 1985, 18, 221. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, Y.-W.; Stormer, H.L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201. [Google Scholar] [CrossRef] [PubMed]
- Delplace, P.; Ullmo, D.; Montambaux, G. Zak phase and the existence of edge states in graphene. Phys. Rev. B 2011, 84, 195452. [Google Scholar] [CrossRef]
- Kane, C.L.; Mele, E.J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 2005, 95, 146802. [Google Scholar] [CrossRef] [PubMed]
- Bernevig, B.A.; Hughes, T.L.; Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 2006, 314, 1757. [Google Scholar] [CrossRef] [PubMed]
- Köning, M.; König, M.; Wiedmann, S.; Brüne, C.; Roth, A.; Buhmann, H.; Molenkamp, L.W.; Qi, X.-L.; Zhang, S.-C. Quantum spin Hall insulator state in HgTe quantum wells. Science 2007, 318, 766–770. [Google Scholar] [CrossRef] [PubMed]
- Delacretaz, G.; Grant, E.R.; Whetten, R.L.; Wöste, L.; Zwanziger, J.W. Fractional quantization of molecular pseudorotation in Na3. Phys. Rev. Lett. 1986, 56, 2598. [Google Scholar] [CrossRef] [PubMed]
- Nadj-Perge, S.; Drozdov, I.K.; Li, J.; Chen, H.; Jeon, S.J.; Seo, J.P.; MacDonald, A.H.; Bernevig, B.A.; Yazdani, A. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 2014, 346, 602. [Google Scholar] [CrossRef] [PubMed]
- Simon, B. Holonomy, the quantum adiabatic theorem, and Berry’s phase. Phys. Rev. Lett. 1983, 51, 2167. [Google Scholar] [CrossRef]
- Puentes, G. Spontaneous parametric downconversion and quantum walk topology. JOSA B 2016, 33, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Atala, M.; Aidelsburger, M.; Barreiro, J.; Abanin, D.; Kitagawa, T.; Demler, E.; Bloch, I. Direct measurement of the Zak phase in topological Bloch bands. Nat. Phys. 2013, 9, 795. [Google Scholar] [CrossRef] [Green Version]
- Loredo, J.C.; Broome, M.A.; Smith, D.H.; White, A.G. Observation of entanglement-dependent two-particle holonomic phase. Phys. Rev. Lett. 2014, 112, 143603. [Google Scholar] [CrossRef] [PubMed]
- Cardano, F.; D’Errico, A.; Dauphin, A.; Maffei, M.; Piccirillo, B.; Lisio, C.D.; Filippis, G.D.; Cataudella, V.; Santamato, E.; Marrucci, L.; et al. Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons. Nat. Commun. 2017, 15516. [Google Scholar] [CrossRef] [PubMed]
- Neves, L.; Lima, G.; Delgado, A.; Saavedra, C. Hybrid photonic entanglement: Realization, characterization, and applications. Phys. Rev. A 2009, 80, 042322. [Google Scholar] [CrossRef]
- Kwiat, P.G.; Waks, E.; White, A.G.; Appelbaum, I.; Eberhard, P.H. Ultrabright source of polarization-entangled photons. Phys. Rev. A 1999, 60, R773. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neves, L.; Puentes, G. Photonic Discrete-time Quantum Walks and Applications. Entropy 2018, 20, 731. https://doi.org/10.3390/e20100731
Neves L, Puentes G. Photonic Discrete-time Quantum Walks and Applications. Entropy. 2018; 20(10):731. https://doi.org/10.3390/e20100731
Chicago/Turabian StyleNeves, Leonardo, and Graciana Puentes. 2018. "Photonic Discrete-time Quantum Walks and Applications" Entropy 20, no. 10: 731. https://doi.org/10.3390/e20100731
APA StyleNeves, L., & Puentes, G. (2018). Photonic Discrete-time Quantum Walks and Applications. Entropy, 20(10), 731. https://doi.org/10.3390/e20100731