Liquid Phase Separation in High-Entropy Alloys—A Review
Abstract
:1. Introduction
1.1. Liquid Phase Separation
1.2. Thermodynamics of Liquid Phase Separation
1.3. Metastable Liquid Phase Separation
1.4. High-Entropy Alloys
2. Solidification Microstructures
2.1. Dendritic Microstructure
2.2. Microstructures Resulting from Liquid Phase Separation
3. High-Entropy Alloys Exhibiting Liquid Phase Separation
3.1. HEAs Containing Cu
3.2. CoCrCuFeNi
4. Closing
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mott, B.W. Liquid immiscibility in metal systems. Philos. Mag. 1957, 2, 259–283. [Google Scholar] [CrossRef]
- Mott, B. Immiscibility in Liquid Metal Systems. J. Mater. Sci. 1968, 3, 424–435. [Google Scholar] [CrossRef]
- Ratke, L.; Diefenbach, S. Liquid immiscible alloys. Mater. Sci. Eng. R 1995, 15, 263–347. [Google Scholar] [CrossRef]
- Ratke, L.; Korekt, G.; Drees, S. Solidification of Immiscible Alloys. In Proceedings of the Space Station Utilisation Symposium, Darmstadt, Germany, 30 September–2 October 1996; European Space Agency: Darmstadt, Germany, 1996; pp. 247–251. [Google Scholar]
- Singh, R.N.; Sommer, F. Segregation and Immiscibility in Liquid Binary Alloys. Rep. Prog. Phys. 1997, 60, 57–150. [Google Scholar] [CrossRef]
- Bale, C.W.; Bélisle, E.; Chartrand, P.; Decterov, S.A.; Eriksson, G.; Gheribi, A.E.; Hack, K.; Jung, I.H.; Kang, Y.B.; Melançon, J.; et al. FactSage thermochemical software and databases, 2010–2016. Calphad Comput. Coupling Phase Diagr. Thermochem. 2016, 55, 1–19. [Google Scholar] [CrossRef]
- Munitz, A.; Abbachian, R.; Cotler, C.; Shacham, C. Liquid Phase Separation in Cu-Co-Fe and Cu-Fe-Ni-Cr Alloys. High Temp. Mater. Process. 1996, 15, 187–194. [Google Scholar] [CrossRef]
- Munitz, A.; Abbaschian, R. Liquid separation in Cu-Co and Cu-Co-Fe alloys solidified at high cooling rates. J. Mater. Sci. 1998, 33, 3639–3649. [Google Scholar] [CrossRef]
- Kim, D.I.; Abbaschian, R. The metastable liquid miscibility gap in Cu-Co-Fe alloys. J. Phase Equilibria 2000, 21, 25–31. [Google Scholar] [CrossRef]
- Bamberger, M.; Munitz, A.; Kaufman, L.; Abbaschian, R. Evaluation of the stable and metastable Cu-Co-Fe phase diagrams. Calphad Comput. Coupling Phase Diagr. Thermochem. 2002, 26, 375–384. [Google Scholar] [CrossRef]
- Wang, C.P.; Liu, X.J.; Ohnuma, I.; Kainuma, R.; Ishida, K. Phase equilibria in Fe-Cu-X (X: Co, Cr, Si, V) ternary systems. J. Phase Equilibria 2002, 23, 236–245. [Google Scholar] [CrossRef]
- Cao, C.D.; Görler, G.P. Direct Measurement of the Metastable Liquid Miscibility Gap in Fe–Co–Cu Ternary Alloy System. Chin. Phys. Lett. 2005, 22, 482–484. [Google Scholar]
- Yamauchi, I.; Irie, T.; Sakaguchi, H. Metastable liquid separation in undercooled Fe-Cu and Fe-Cu-Si melts containing a small B concentration and their solidification structure. J. Alloy. Compd. 2005, 403, 211–216. [Google Scholar] [CrossRef]
- Munitz, A.; Bamberger, A.M.; Wannaparhun, S.; Abbaschian, R. Effects of supercooling and cooling rate on the microstructure of Cu-Co-Fe alloys. J. Mater. Sci. 2006, 41, 2749–2759. [Google Scholar] [CrossRef]
- Curiotto, S.; Greco, R.; Pryds, N.H.; Johnson, E.; Battezzati, L. The liquid metastable miscibility gap in Cu-based systems. Fluid Phase Equilibria 2007, 256, 132–136. [Google Scholar] [CrossRef]
- Munitz, A.; Venkert, A.; Landau, P.; Kaufman, M.J.; Abbaschian, R. Microstructure and phase selection in supercooled copper alloys exhibiting metastable liquid miscibility gaps. J. Mater. Sci. 2012, 47, 7955–7970. [Google Scholar] [CrossRef]
- Liu, N.; Liu, F.; Yang, W.; Chen, Z.; Yang, G.C. Movement of minor phase in undercooled immiscible Fe-Co-Cu alloys. J. Alloy. Compd. 2013, 551, 323–326. [Google Scholar] [CrossRef]
- Yeh, J.W.; Lin, S.J.; Chin, T.S.; Gan, J.Y.; Chen, S.K.; Shun, T.T.; Tsau, C.H.; Chou, S.Y. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metall. Mater. Trans. A 2004, 35, 2533–2536. [Google Scholar] [CrossRef] [Green Version]
- Miedema, A.R. A simple model for alloys I. Philips Tech. Rev. 1973, 33, 149–160. [Google Scholar]
- Takeuchi, A.; Inoue, A. Metallic Glasses By Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application To Characterization of the Main Alloying Element. Mater. Trans. 2005, 46, 2817–2829. [Google Scholar] [CrossRef]
- Takeuchi, A.; Inoue, A. Mixing enthalpy of liquid phase calculated by miedema’s scheme and approximated with sub-regular solution model for assessing forming ability of amorphous and glassy alloys. Intermetallics 2010, 18, 1779–1789. [Google Scholar] [CrossRef]
- Hardy, H. A “sub-regular” solution model and its application to some binary alloy systems. Acta Metall. 1953, 1, 202–209. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Systemes, D.L.E.S. Liquid immiscibility in copper-iron and copper-cobalt systems in the supercooled state. Acta Metall. 1958, 6, 704–711. [Google Scholar] [CrossRef]
- Munitz, A.; Abbaschian, R. Two-melt separation in supercooled Cu-Co alloys solidifying in a drop-tube. J. Mater. Sci. 1991, 26, 6458–6466. [Google Scholar] [CrossRef]
- Munitz, A.; Elder-Randall, S.P.; Abbaschian, R. Supercooling effects in Cu-10 Wt Pct Co alloys solidified at different cooling rates. Metall. Trans. A 1992, 23, 1817–1827. [Google Scholar] [CrossRef]
- Munitz, A.; Abbaschian, R. Microstructure of Cu-Co Alloys Solidified at Various Supercoolings. Metall. Mater. Trans. A 1996, 27, 4049–4059. [Google Scholar] [CrossRef]
- Robinson, M.B.; Li, D.; Rathz, T.J.; Williams, G. Undercooling, liquid separation and solidification of Cu-Co alloys. J. Mater. Sci. 1999, 34, 3747–3753. [Google Scholar] [CrossRef]
- Kolbe, M.; Gao, J.R. Liquid phase separation of Co-Cu alloys in the metastable miscibility gap. Mater. Sci. Eng. A 2005, 413–414, 509–513. [Google Scholar] [CrossRef]
- Curiotto, S.; Pryds, N.H.; Johnson, E.; Battezzati, L. Liquid-liquid phase separation and remixing in the Cu-Co system. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2006, 37, 2361–2368. [Google Scholar] [CrossRef]
- Yang, W.; Xu, Z.; Wang, Z.; Li, S.; Liu, F.; Yang, G. Microstructure morphology and solute segregation in nonequilibrium solidification of metastable immiscible Cu50Co50 alloy. Procedia Eng. 2012, 27, 1518–1523. [Google Scholar] [CrossRef]
- Zhang, Y.K.; Gao, J.; Yang, C.; Kolbe, M.; Binder, S.; Herlach, D.M. Asynchronous crystallization behavior of Co-rich droplets in phase-separated Cu-Co alloys. Mater. Lett. 2012, 73, 56–58. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, J.; Yasuda, H.; Kolbe, M.; Wilde, G. Particle size distribution and composition in phase-separated Cu75Co25 alloys under various magnetic fields. Scr. Mater. 2014, 82, 5–8. [Google Scholar] [CrossRef]
- Si, S.H.; Zhang, H.; He, Y.Z.; Li, M.X.; Guo, S. Liquid Phase Separation and the Aging Effect on Mechanical and Electrical Properties of Laser Rapidly Solidified Cu100-xCrx Alloys. Metals 2015, 5, 2119–2127. [Google Scholar] [CrossRef]
- Jegede, O.E.; Cochrane, R.F.; Mullis, A.M. Metastable monotectic phase separation in Co–Cu alloys. J. Mater. Sci. 2018, 53, 11749–11764. [Google Scholar] [CrossRef]
- Chuang, Y.Y.; Schmid, R.; Chang, Y.A. Thermodynamic analysis of the iron-copper system I: The stable and metastable phase equilibria. Metall. Trans. A 1984, 15, 1921–1930. [Google Scholar] [CrossRef]
- Munitz, A. Liquid separation effects in Fe-Cu alloys solidified under different cooling rates. Metall. Trans. B 1987, 18, 565–575. [Google Scholar] [CrossRef]
- Munitz, A. Metastable liquid phase separation in tungsten inert gas and electron beam copper/stainless-steel welds. J. Mater. Sci. 1995, 30, 2901–2910. [Google Scholar] [CrossRef]
- Wang, C.P.; Liu, X.J.; Takaku, Y.; Ohnuma, I.; Kainuma, R.; Ishida, K. Formation of core-type macroscopic morphologies in Cu-Fe base alloys with liquid miscibility gap. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2004, 35, 1243–1253. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Liu, F.; Yang, G.C.; Xu, X.Q.; Zhou, Y.H. Rapid solidification of bulk undercooled hypoperitectic Fe-Cu alloy. J. Alloy. Compd. 2007, 427, 3–7. [Google Scholar] [CrossRef]
- Zhang, Y.K.; Gao, J.; Nagamatsu, D.; Fukuda, T.; Yasuda, H.; Kolbe, M.; He, J.C. Reduced droplet coarsening in electromagnetically levitated and phase-separated Cu-Co alloys by imposition of a static magnetic field. Scr. Mater. 2008, 59, 1002–1005. [Google Scholar] [CrossRef]
- Liu, N. Investigation on the phase separation in undercooled Cu-Fe melts. J. Non-Cryst. Solids 2012, 358, 196–199. [Google Scholar] [CrossRef]
- Zhang, J.T.; Wang, Y.H.; Cui, X.C.; Lin, J.B. The growth and congregation of minor phase in immiscible Cu-Fe alloys. Medziagotyra 2013, 19, 373–376. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, X.; Wang, Y. Liquid phase separation in immiscible Cu–Fe alloys. Int. J. Cast Met. Res. 2018, 31, 87–92. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375-377, 213–218. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Yeh, J.W.; Chen, S.K.; Shun, T.T. Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition. Metall. Mater. Trans. A 2004, 35, 1465–1469. [Google Scholar] [CrossRef]
- Huang, P.; Yeh, J. Multi-Principal Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating. Adv. Eng. Mater. 2004, 6, 74–78. [Google Scholar] [CrossRef]
- Chen, T.K.; Wong, M.S.; Shun, T.T.; Yeh, J.W. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf. Coat. Technol. 2004, 200, 193–200. [Google Scholar] [CrossRef]
- Tsai, M.H. Physical properties of high entropy alloys. Entropy 2013, 15, 5338–5345. [Google Scholar] [CrossRef]
- Gao, M.C. Progress in high-entropy alloys. Jom 2013, 65, 1749–1750. [Google Scholar] [CrossRef]
- Gao, M.C. Progress in high-entropy alloys. Jom 2014, 66, 1964–1965. [Google Scholar] [CrossRef]
- Tsai, M.H.; Yeh, J.W. High-entropy alloys: A critical review. Mater. Res. Lett. 2014, 2, 107–123. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Kozak, R.; Sologubenko, A.; Steurer, W. Single-phase high-entropy alloys—An overview. Z. Krist. 2015, 230, 55–68. [Google Scholar] [CrossRef]
- Gao, M.C. Progress in high entropy alloys. Jom 2015, 67, 2251–2253. [Google Scholar] [CrossRef]
- Pickering, E.J.; Jones, N.G. High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 2016, 61, 183–202. [Google Scholar] [CrossRef]
- Ye, Y.F.; Wang, Q.; Lu, J.; Liu, C.T.; Yang, Y. High-entropy alloy: Challenges and prospects. Mater. Today 2016, 19, 349–362. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Manzoni, A.M.; Glatzel, U. New multiphase compositionally complex alloys driven by the high entropy alloy approach. Mater. Charact. 2018. [Google Scholar] [CrossRef]
- Praveen, S.; Kim, H.S. High-entropy alloys: Potential candidates for high-temperature applications—An overview. Adv. Eng. Mater. 2018, 20, 1–22. [Google Scholar] [CrossRef]
- Murty, B.; Yeh, J.; Ranganathan, S. High-Entropy Alloys, 1st ed.; Butterworth-Heinemann: London, UK, 2014. [Google Scholar]
- Fisher, D. High-Entropy Alloys—Microstructures and Properties; Trans Tech Publications: Zurich, Switzerland, 2015. [Google Scholar]
- Maiti, S. Local Structure and Properties of Refractory High-Entropy Alloys: High-Entropy Alloys Critically Analyzed from a More Fundamental Point of View; Lambert Academic Publishing: Saarbrücken, Germany, 2016. [Google Scholar]
- Zhang, C.; Gao, M.C. High-Entropy Alloys: Fundamentals and Applications; Springer International Publishing: Cham, Switzerland, 2016; pp. 399–444. [Google Scholar]
- Tian, F.; Varga, L.; Levente, V. Theoretical Design of Single Phase High-Entropy Alloys, 1st ed.; Lambert Academic Publishing: Saarbrücken, Germany, 2017. [Google Scholar]
- Raj, A. HEA: High Entropy Alloys; CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2017. [Google Scholar]
- Liu, X.J.; Jiang, Z.P.; Wang, C.P.; Ishida, K. Experimental determination and thermodynamic calculation of the phase equilibria in the Cu-Cr-Nb and Cu-Cr-Co systems. J. Alloy. Compd. 2009, 478, 287–296. [Google Scholar] [CrossRef]
- Chang, Y.A.; Goldberg, D.; Neumann, J.P. Phase diagrams and thermodynamic properties of ternary copper-silver systems. J. Phys. Chem. Ref. Data 1977, 6, 621–674. [Google Scholar] [CrossRef]
- Taguchi, K.; Ono-Nakazato, H.; Usui, T. Liquid Immiscibility in Fe-Cu-B System. ISIJ Int. 2006, 46, 633–636. [Google Scholar] [CrossRef]
- Guo, J.B.; Cao, C.D.; Gong, S.L.; Song, R.B.; Bai, X.J.; Wang, J.Y.; Zheng, J.B.; Wen, X.X.; Sun, Z.B. Rapid solidification of Cu60Co30Cr10alloy under different conditions. Trans. Nonferrous Met. Soc. China (Engl. Ed.) 2013, 23, 731–734. [Google Scholar] [CrossRef]
- Derimow, N.; Abbaschian, R. Solidification microstructures and calculated mixing enthalpies in CoCrCu containing alloys. Mater. Today Commun. 2018, 15, 1–10. [Google Scholar] [CrossRef]
- Derimow, N.; Santodonato, L.; Mills, R.; Abbaschian, R. In-Situ Imaging of Liquid Phase Separation in Molten Alloys Using Cold Neutrons. J. Imaging 2018, 4, 5. [Google Scholar] [CrossRef]
- Liu, N.; Liu, F.; Chen, Z.; Yang, G.; Yang, C.; Zhou, Y. Liquid-phase Separation in Rapid Solidification of Undercooled Fe-Co-Cu Melts. J. Mater. Sci. Technol. 2012, 28, 622–625. [Google Scholar] [CrossRef]
- Dreval, L.A.; Turchanin, M.A.; Abdulov, A.R.; Bondar, A.A. Thermodynamic assessment of the Cu-Fe-Cr phase diagram. Chem. Met. Alloy. 2010, 3, 132–139. [Google Scholar]
- Nagase, T.; Matsumoto, M.; Fujii, Y. Microstructure of Ti-Nb-Ag immiscible alloys with liquid phase separation. Microscopy 2017, 66, i22. [Google Scholar] [CrossRef]
- Wang, C.P.; Liu, X.J.; Ohnuma, I.; Kainuma, R.; Ishida, K.; Hao, S.M. Phase equilibria in the Cu-Fe-Mo and Cu-Fe-Nb systems. J. Phase Equilibria 2000, 21, 54–62. [Google Scholar] [CrossRef]
- Bo, L.; Li, S.; Wang, L.; Wu, D.; Zuo, M.; Zhao, D. Liquid-liquid phase separation and solidification behavior of Al55Bi36Cu9monotectic alloy with different cooling rates. Results Phys. 2018, 8, 1086–1091. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, R.; Wu, D.; Bo, L.; Wang, L. Liquid-liquid phase separation and solidification behavior of Al-Bi-Sb immiscible alloys. Results Phys. 2017, 7, 3216–3221. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, X.; Li, L.; Wei, B. Dual solidification mechanisms of liquid ternary Fe-Cu-Sn alloy. Sci. China Phys. Mech. Astron. 2012, 55, 450–459. [Google Scholar] [CrossRef]
- Liu, H.X.; Wang, C.P.; Yu, Y.; Liu, X.J.; Takaku, Y.; Ohnuma, I.; Kainuma, R.; Ishida, K. Experimental investigation and thermodynamic calculation of the phase equilibria in the Al-Bi-Sn ternary system. J. Phase Equilibria Diffus. 2012, 33, 9–19. [Google Scholar] [CrossRef]
- Dai, R.; Zhang, J.F.; Zhang, S.G.; Li, J.G. Liquid immiscibility and core-shell morphology formation in ternary Al-Bi-Sn alloys. Mater. Charact. 2013, 81, 49–55. [Google Scholar] [CrossRef]
- Sun, X.; Li, M.; Jia, P.; Geng, H. Liquid–liquid phase equilibrium in ternary immiscible Al-Bi-Sn melts. Phys. Chem. Liq. 2016, 54, 740–746. [Google Scholar] [CrossRef]
- Wang, L.; Li, S.; Bo, L.; Wu, D.; Zhao, D. Liquid-liquid phase separation and solidification behavior of Al-Bi-Sn monotectic alloy. J. Mol. Liq. 2018, 254, 333–339. [Google Scholar] [CrossRef]
- Zhai, W.; Liu, H.M.; Wei, B. Liquid phase separation and monotectic structure evolution of ternary Al62.6Sn28.5Cu8.9 immiscible alloy within ultrasonic field. Mater. Lett. 2015, 141, 221–224. [Google Scholar] [CrossRef]
- Tong, C.J.; Chen, Y.L.; Yeh, J.W.; Lin, S.J.; Chen, S.K.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 2005, 36, 1263–1271. [Google Scholar] [CrossRef]
- Tong, C.J.; Chen, Y.L.; Yeh, J.W.; Lin, S.J.; Chen, S.K.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 2005, 36, 881–893. [Google Scholar] [CrossRef]
- Santodonato, L.J.; Zhang, Y.; Feygenson, M.; Parish, C.M.; Gao, M.C.; Weber, R.J.K.; Neuefeind, J.C.; Tang, Z.; Liaw, P.K. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 2015, 6, 5964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Zhang, Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 2012, 132, 233–238. [Google Scholar] [CrossRef]
- Miracle, D.; Miller, J.; Senkov, O.; Woodward, C.; Uchic, M.; Tiley, J. Exploration and development of high entropy alloys for structural applications. Entropy 2014, 16, 494–525. [Google Scholar] [CrossRef]
- Senkov, O.N.; Miller, J.D.; Miracle, D.B.; Woodward, C. Accelerated exploration of multi-principal element alloys for structural applications. Calphad Comput. Coupling Phase Diagr. Thermochem. 2015, 50, 32–48. [Google Scholar] [CrossRef]
- Troparevsky, M.C.; Morris, J.R.; Kent, P.R.C.; Lupini, A.R.; Stocks, G.M. Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 2015, 5, 1–6. [Google Scholar] [CrossRef]
- Toda-Caraballo, I.; Rivera-Díaz-del Castillo, P. A criterion for the formation of high entropy alloys based on lattice distortion. Intermetallics 2016, 71, 76–87. [Google Scholar] [CrossRef]
- Tancret, F.; Toda-Caraballo, I.; Menou, E.; Díaz-Del-Castillo, P.E.J.R. Designing high entropy alloys employing thermodynamics and Gaussian process statistical analysis. Mater. Des. 2017, 115, 486–497. [Google Scholar] [CrossRef]
- Gurao, N.P.; Biswas, K. In the quest of single phase multi-component multiprincipal high entropy alloys. J. Alloy. Compd. 2017, 697, 434–442. [Google Scholar] [CrossRef]
- Sun, W.; Huang, X.; Luo, A.A. Phase formations in low density high entropy alloys. Calphad Comput. Coupling Phase Diagr. Thermochem. 2017, 56, 19–28. [Google Scholar] [CrossRef]
- Tsai, M.H.; Li, J.H.; Fan, A.C.; Tsai, P.H. Incorrect predictions of simple solid solution high entropy alloys: Cause and possible solution. Scr. Mater. 2017, 127, 6–9. [Google Scholar] [CrossRef]
- Dantzig, J.; Rappaz, M. Solidification, 2nd ed.; EPFL Press: Lausanne, Switzerland, 2016. [Google Scholar]
- Takamatsu, Y.; Esaka, H.; Shinozuka, K. Liquid-phase separation in the interdendritic region after growth of primary β-Sn in undercooled Sn-2.8Ag-0.3Cu melt. J. Electron. Mater. 2012, 41, 2035–2044. [Google Scholar] [CrossRef]
- Munitz, A.; Samuha, S.; Brosh, E.; Salhov, S.; Derimow, N.; Abbaschian, R. Liquid phase separation phenomena in Al 2.2 CrCuFeNi 2 HEA. Intermetallics 2018, 97, 77–84. [Google Scholar] [CrossRef]
- Kamio, A.; Kumai, S.; Tezuka, H. Solidification structure of monotectic alloys. Mater. Sci. Eng. A 1991, 146, 105–121. [Google Scholar] [CrossRef]
- Fan, Z.; Ji, S.; Zhang, J.; Fan, Z.; Ji, S.; Zhang, J. Processing of immiscible metallic alloys by rheomixing process. Mater. Sci. Technol. 2001, 17, 837–842. [Google Scholar] [CrossRef]
- Barry Andrews, J. Low Gravity Containerless Processing of Immiscible Gold Rhodium Alloy. Available online: https://ntrs.nasa.gov/search.jsp?R=19870007312 (accessed on 19 November 2018).
- Ratke, L.; Korekt, G.; Drees, S. Phase separation and solidification of immiscible metallic alloys under low gravity. Adv. Space Res. 1998, 22, 1227–1236. [Google Scholar] [CrossRef]
- Luo, B.C.; Liu, X.R.; Wei, B. Macroscopic liquid phase separation of Fe-Sn immiscible alloy investigated by both experiment and simulation. J. Appl. Phys. 2009, 106. [Google Scholar] [CrossRef]
- Lu, W.Q.; Zhang, S.G.; Li, J.G. Depressing liquid phase separation and macrosegeregation of Fe-Sn immiscible alloys by Cu alloying. Mater. Sci. Technol. 2014, 30, 231–235. [Google Scholar] [CrossRef]
- Hsu, U.S.; Hung, U.D.; Yeh, J.W.; Chen, S.K.; Huang, Y.S.; Yang, C.C. Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys. Mater. Sci. Eng. A 2007, 460-461, 403–408. [Google Scholar] [CrossRef]
- Munitz, A.; Kaufman, M.; Chandler, J.; Kalaantari, H.; Abbaschian, R. Melt separation phenomena in CoNiCuAlCr high entropy alloy containing silver. Mater. Sci. Eng. A 2013, 560, 633–642. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, W.; He, Y.; Li, M.; Guo, S. Formation of core—Shell structure in high entropy alloy coating by laser cladding. Appl. Surf. Sci. 2016, 363, 543–547. [Google Scholar] [CrossRef]
- Guo, S.; Ng, C.; Liu, C.T. Anomalous solidification microstructures in Co-free Al xCrCuFeNi2 high-entropy alloys. J. Alloy. Compd. 2013, 557, 77–81. [Google Scholar] [CrossRef]
- He, J.; Mattern, N.; Tan, J.; Zhao, J.Z.; Kaban, I.; Wang, Z.; Ratke, L.; Kim, D.H.; Kim, W.T.; Eckert, J. A bridge from monotectic alloys to liquid-phase-separated bulk metallic glasses: Design, microstructure and phase evolution. Acta Mater. 2013, 61, 2102–2112. [Google Scholar] [CrossRef]
- Munitz, A.; Kaufman, M.; Abbaschian, R. Liquid phase separation in transition element high entropy alloys. Intermetallics 2017, 86, 59–72. [Google Scholar] [CrossRef]
- Kündig, A.A.; Ohnuma, M.; Ping, D.H.; Ohkubo, T.; Hono, K. In situ formed two-phase metallic glass with surface fractal microstructure. Acta Mater. 2004, 52, 2441–2448. [Google Scholar] [CrossRef]
- Ziewiec, K.; Garze, G.; Czeppe, T.; Artur, B.; Ruebenbauer, K. Microstructure and phase transformations in a liquid immiscible Fe60Cu20P10Si5B5 alloy. Intermetallics 2016, 69, 47–53. [Google Scholar] [CrossRef]
- Wu, P.H.; Liu, N.; Yang, W.; Zhu, Z.X.; Lu, Y.P.; Wang, X.J. Microstructure and solidification behavior of multicomponent CoCrCuxFeMoNi high-entropy alloys. Mater. Sci. Eng. A 2015, 642, 142–149. [Google Scholar] [CrossRef]
- Liu, N.; Wu, P.; Zhou, P.; Peng, Z.; Wang, X.; Lu, Y. Rapid solidification and liquid-phase separation of undercooled CoCrCuFexNi high-entropy alloys. Intermetallics 2016, 72, 44–52. [Google Scholar] [CrossRef]
- Wu, P.H.; Liu, N.; Zhou, P.J.; Peng, Z.; Du, W.D.; Wang, X.J.; Pan, Y. Microstructures and liquid phase separation in multicomponent CoCrCuFeNi high entropy alloys. Mater. Sci. Technol. 2016, 32, 576–580. [Google Scholar] [CrossRef]
- Wang, W.; Hu, L.; Luo, S.; Meng, L.; Geng, D.; Wei, B. Liquid phase separation and rapid dendritic growth of high-entropy CoCrCuFeNi alloy. Intermetallics 2016, 77, 41–45. [Google Scholar] [CrossRef]
- Guo, T.; Li, J.; Wang, J.; Wang, Y.; Kou, H.; Niu, S. Liquid-phase separation in undercooled CoCrCuFeNi high entropy alloy. Intermetallics 2017, 86, 110–115. [Google Scholar] [CrossRef]
- Peng, Z.; Liu, N.; Zhang, S.Y.; Wu, P.H.; Wang, X.J. Liquid-phase separation of immiscible CrCuxFeMoyNi high-entropy alloys. Mater. Sci. Technol. 2017, 33, 1352–1359. [Google Scholar] [CrossRef]
- Elder, S.; Abbaschian, G.J. Supercooling and Rapid Solidification using EM Levitation. Trans. Tech. Publ. 1991, 10, 299–330. [Google Scholar]
- Wang, S.; Chen, Z.; Feng, L.C.; Liu, Y.Y.; Zhang, P.; He, Y.Z.; Meng, Q.Q.; Zhang, J.Y. Nano-phase formation accompanying phase separation in undercooled CoCrCuFeNi-3 at.% Sn high entropy alloy. Mater. Charact. 2018, 144, 516–521. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Sheu, T.S.; Yeh, J.W.; Chen, S.K. Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys. Wear 2010, 268, 653–659. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Wang, W.R.; Tang, W.Y.; Chen, S.K.; Yeh, J.W. Microstructure and mechanical properties of new AlCoxCrFeMo 0.5Ni high-entropy alloys. Adv. Eng. Mater. 2010, 12, 44–49. [Google Scholar] [CrossRef]
- Zhu, J.M.; Zhang, H.F.; Fu, H.M.; Wang, A.M.; Li, H.; Hu, Z.Q. Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMox alloys. J. Alloy. Compd. 2010, 497, 52–56. [Google Scholar] [CrossRef]
Ag-B | Au-Ru | Bi-V | Ce-Cr | Cs-Fe | Fe-Na | K-Mo | Li-Tb | Na-Y | Sr-Tm |
Ag-Co | B-Ge | Bi-Zn | Ce-Eu | Cu-K | Fe-Pb | K-Nd | Li-Ti | Na-Yb | Sr-V |
Ag-Cr | B-Sn | C-Cu | Ce-K | Cu-Mo | Fe-Rb | K-Ni | Li-V | Na-Zn | Sr-Y |
Ag-Fe | Ba-Ce | C-Sn | Ce-Li | Cu-Na | Fe-Sn | K-Pb | Li-Yb | Na-Zr | Sr-Zr |
Ag-Ir | Ba-Cr | Ca-Cd | Ce-Mo | Cu-Pb | Fe-Sr | K-Pm | Li-Zr | Nd-Sr | Tb-Ti |
Ag-K | Ba-Fe | Ca-Ce | Ce-Na | Cu-Ru | Fe-Tl | K-Pr | Lu-Na | Nd-Ti | Tb-V |
Ag-Mn | Ba-Gd | Ca-Cr | Ce-Sr | Cu-Se | Ga-Hg | K-Sc | Lu-Sr | Nd-V | Te-Tl |
Ag-Nb | Ba-K | Ca-Dy | Ce-Ti | Cu-Tl | Ga-Pb | K-Sm | Lu-V | Nd-Yb | Th-U |
Ag-Nb | Ba-La | Ca-Er | Ce-U | Cu-Tu | Ga-Te | K-Sr | Lu-Yb | Ni-Pb | Ti-Yb |
Ag-Ni | Ba-Mn | Ca-Fe | Ce-V | Cu-U | Ga-Tl | K-Tb | Mg-Mn | Ni-Sr | Tl-Zn |
Ag-Os | Ba-Nd | Ca-Gd | Ce-Zr | Cu-V | Ge-Tl | K-Ti | Mg-Mo | Ni-Tl | Tm-V |
Ag-Os | Ba-Pm | Ca-Ho | Co-In | Cu-W | Gd-K | K-Tm | Mg-Na | Pb-Se | V-Y |
Ag-Rh | Ba-Pr | Ca-K | Co-K | Cr-Pb | Gd-Li | K-V | Mg-Nb | Pb-Si | V-Yb |
Ag-Rh | Ba-Ru | Ca-La | Co-Li | Cr-Sn | Gd-Mo | K-Y | Mg-Ru | Pb-Zn | W-Zn |
Ag-Se | Ba-Sc | Ca-Lu | Co-Pb | Dy-K | Gd-Na | K-Yb | Mg-Ru | Pb-Zr | |
Ag-Ta | Ba-Sm | Ca-Mn | Co-Tl | Dy-Li | Gd-Sr | K-Zn | Mg-Ta | Pm-Sr | |
Ag-U | Ba-Ti | Ca-Na | Cr-Dy | Dy-Na | Gd-Ti | K-Zr | Mg-Ti | Pm-Ti | |
Ag-V | Ba-Y | Ca-Nd | Cr-Er | Dy-Sr | Gd-V | La-Li | Mg-W | Pm-V | |
Ag-W | Ba-Zr | Ca-Pm | Cr-Eu | Dy-Ti | Gd-Yb | La-Mn | Mg-Zr | Pr-Sr | |
Al-Bi | Be-K | Ca-Pr | Cr-Gd | Dy-V | Hg-Nb | La-Na | Mn-Na | Pr-Ti | |
Al-Cd | Be-Li | Ca-Ru | Cr-K | Er-K | Hg-Si | La-Sr | Mn-Pb | Pr-V | |
Al-In | Be-Mg | Ca-Sc | Cr-La | Er-K | Hf-Mg | La-Ti | Mn-Sr | Pr-Zr | |
Al-K | Be-Na | Ca-Sm | Cr-Li | Er-Na | Ho-K | La-V | Mn-Tl | Sc-V | |
Al-Na | Be-Se | Ca-Tb | Cr-Mg | Er-Sr | Ho-Mo | La-Zr | Mn-Yb | Sc-Sr | |
Al-Pb | Be-Sn | Ca-Ti | Cr-Na | Er-V | Ho-Na | Li-Cs | Mo-Na | Sc-V | |
Al-Tl | Be-Sr | Ca-Tm | Cr-Nd | Eu-Li | Ho-Sr | Li-Fe | Na-Nd | Se-Tl | |
As-Tl | Be-Zn | Ca-V | Cr-Pb | Eu-Mn | Ho-Ti | Li-K | Na-Ni | Si-Tl | |
Au-B | Bi-Co | Ca-Y | Cr-Pm | Eu-Na | Ho-V | Li-Na | Na-Pm | Sm-Sr | |
Au-Ir | Bi-Cr | Ca-W | Cr-Pr | Eu-T I | In-Te | Li-Nd | Na-Pr | Sm-Ti | |
Au-Mo | Bi-Fe | Ca-Zr | Cr-Sm | Eu-V | In-V | Li-Ni | Na-Sc | Sm-V | |
Au-Rh | Bi-Ga | Cd-Cr | Cr-Sn | Eu-Zr | K-La | Li-Pm | Na-Sm | Sn-V | |
Au-Rh | Bi-Mn | Cd-Fe | Cr-Sr | Fe-In | K-Li | Li-Pr | Na-Tb | Sn-W | |
Au-Se | Bi-Rb | Cd-Ga | Cr-Tm | Fe-K | K-Lu | Li-Rb | Na-Ti | Sn-Zr | |
Au-W | Bi-Se | Cd-K | Cr-Y | Fe-Li | K-Mg | Li-Sc | Na-Tm | Sr-Tb | |
Au-Ru | Bi-Si | Cd-Na | Cr-Yb | Fe-Mg | K-Mn | Li-Sm | Na-V | Sr-Ti |
Ag-Al-Pb | [6] | Al-Mg-Mn | [6] |
Ag-Co-Pd | [6] | Au-Cu-Pb | [6] |
Ag-Cu-Fe | [68] | Au-In-Pb | [6] |
Ag-Cu-Mn | [68] | Au-In-Pb | [6] |
Ag-Cu-Ni | [68] | B-Cu-Fe | [13,69] |
Ag-Cu-Pb | [68] | Bi-Ga-Zn | [6] |
Ag-Cu-Se | [68] | Co-Cr-Cu | [67,70,71,72] |
Ag-Cu-Ti | [68] | Co-Cr-Nb | [67] |
Ag-Fe-Mn | [6] | Co-Cu-Fe | [7,8,9,10,11,12,14,15,16,17,73] |
Ag-Fe-Ni | [6] | Cr-Cu-Fe | [11,74] |
Ag-Nb-Ti | [75] | Cu-Fe-Mo | [76] |
Ag-Ni-Sn | [6] | Cu-Fe-Nb | [76] |
Al-Bi-Cu | [77] | Cu-Fe -Si | [11,13] |
Al-Bi-Sb | [78] | Cu-Fe-Sn | [79] |
Al-Bi-Sn | [80,81,82,83] | Cu-Fe-V | [11] |
Al-Cu-Sn | [84] | Cu-Ni-Pb | [6] |
Al-Ga-In | [6] | Fe-Si-Zn | [6] |
Al-Ga-Sn | [6] | Pb-Pd-Sn | [6] |
System | Classification | Type of LPS | Ref. |
---|---|---|---|
Ag-Al-Co-Cr-Cu-Fe-Ni | HEA | Stable | [107] |
Ag-Al-Co-Cr-Cu-Ni | HEA | Stable | [106,107] |
Al-Co-Ce-La-Zr | Bulk Metallic Glass | Stable/Metastable | [110] |
Al-Co-Cr-Cu-Fe-V | HEA | Stable | [111] |
Al-Cr-Cu-Fe-Ni | HEA | Stable | [99] |
Al-Cu-La-Ni-Zr | Bulk Metallic Glass | Stable | [112] |
B-Cu-Fe-P-Si | Fe-Cu-alloy | Stable | [113] |
Co-Cr-Cu-Fe | HEA | Stable | [71,111] |
Co-Cr-Cu-Fe-Mn | HEA | Stable | [71] |
Co-Cr-Cu-Fe-Mo-Ni | HEA | Stable | [114] |
Co-Cr-Cu-Fe-Ni | HEA | Metastable | [115,116,117,118] |
Co-Cr-Cu-Fe-Ni-Nb | HEA | Stable | [111] |
Co-Cr-Cu-Fe-Ti-V | HEA | Stable | [111] |
Co-Cr-Cu-Fe-V | HEA | Stable | [71,111] |
Co-Cr-Cu-Mn | HEA | Stable | [71] |
Co-Cr-Cu-Mn-V | HEA | Stable | [71] |
Co-Cr-Cu-Ni-V | HEA | Stable | [71] |
Co-Cr-Cu-V | HEA | Stable | [71] |
Cr-Cu-Fe-Mn-V | HEA | Stable | [111] |
Cr-Cu-Fe-Mo-Ni | HEA | Stable | [119] |
Cr-Cu-Fe -Ni | Cu-alloy | Stable/Metastable | [7] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derimow, N.; Abbaschian, R. Liquid Phase Separation in High-Entropy Alloys—A Review. Entropy 2018, 20, 890. https://doi.org/10.3390/e20110890
Derimow N, Abbaschian R. Liquid Phase Separation in High-Entropy Alloys—A Review. Entropy. 2018; 20(11):890. https://doi.org/10.3390/e20110890
Chicago/Turabian StyleDerimow, Nicholas, and Reza Abbaschian. 2018. "Liquid Phase Separation in High-Entropy Alloys—A Review" Entropy 20, no. 11: 890. https://doi.org/10.3390/e20110890
APA StyleDerimow, N., & Abbaschian, R. (2018). Liquid Phase Separation in High-Entropy Alloys—A Review. Entropy, 20(11), 890. https://doi.org/10.3390/e20110890