Mixture and Exponential Arcs on Generalized Statistical Manifold
Abstract
:1. Introduction
2. Preliminary Results
2.1. -Families of Probability Distributions
- (i)
- is convex and lower semi-continuous for -a.e. (almost everywhere) ,
- (ii)
- and for -a.e. ,
- (iii)
- is measurable for each .
- (i)
- is convex and injective;
- (ii)
- and ;
- (iii)
- There exists a measurable function such that
- (iii’)
- There exists a measurable function such that
2.2. The Subdifferential of a Convex function
3. Construction of Generalized Mixture Arcs
3.1. Subdifferential of the Normalizing Function
3.2. Convexity of the Functionals Set
4. Generalized Arcs
4.1. Generalized Open Exponential Arcs
4.2. Generalized Open Mixture Arcs
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Amari, S.-I. Information geometry on hierarchy of probability distributions. IEEE Trans. Inf. Theory 2001, 47, 1701–1711. [Google Scholar] [CrossRef]
- Calin, O.; Udrişte, C. Geometric Modeling in Probability and Statistics; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Amari, S.-I. Information geometry and its applications. In Applied Mathematical Sciences; Springer: Tokyo, Japan, 2016; Volume 194. [Google Scholar]
- Amari, S.-I. Differential Geometry of Curved Exponential Families-Curvatures and Information Loss. Ann. Stat. 1982, 10, 357–385. [Google Scholar] [CrossRef]
- Amari, S.-I. Differential-Geometrical Methods in Statistics; Lecture Notes in Statistics; Springer: New York, NY, USA, 1985; Volume 28. [Google Scholar]
- Amari, S.-I.; Nagaoka, H. Methods of information geometry. In Translations of Mathematical Monographs; American Mathematical Society, Providence, RI; Translated from the 1993 Japanese original by Daishi Harada; Oxford University Press: Oxford, UK, 2000; Volume 191. [Google Scholar]
- Amari, S.-I.; Cichocki, A. Information geometry of divergence functions. Bull. Pol. Acad. Sci. Tech. Sci. 2010, 58, 183–195. [Google Scholar]
- Amari, S.-I. α-Divergence Is Unique, Belonging to Both f-Divergence and Bregman Divergence Classes. IEEE Trans. Inf. Theory 2009, 55, 4925–4931. [Google Scholar] [CrossRef]
- Zhang, J. Divergence Function, Duality, and Convex Analysis. Neural Comput. 2004, 16, 159–195. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, F.; Nock, R. On w-mixtures: Finite convex combinations of prescribed component distributions. arXiv, 2017; arXiv:1708.00568v1. [Google Scholar]
- Amari, S.-I.; Ohara, A.; Matsuzoe, H. Geometry of deformed exponential families: Invariant, dually-flat and conformal geometries. Phys. A Stat. Mech. Appl. 2012, 391, 4308–4319. [Google Scholar] [CrossRef]
- Harsha, K.V.; Moosath, K.S.S. Dually flat geometries of the deformed exponential family. Phys. A Stat. Mech. Appl. 2015, 433, 136–147. [Google Scholar]
- Matsuzoe, H. Hessian structures on deformed exponential families and their conformal structures. Differ. Geom. Appl. 2014, 35, 323–333. [Google Scholar] [CrossRef]
- Matsuzoe, H.; Wada, T. Deformed Algebras and Generalizations of Independence on Deformed Exponential Families. Entropy 2015, 17, 5729–5751. [Google Scholar] [CrossRef]
- Giné, E.; Nickl, R. Mathematical Foundations of Infinite-Dimensional Statistical Models; Cambridge Series in Statistical and Probabilistic Mathematics; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Townsend, J.; Solomon, B.; Smith, J. The perfect gestalt: Infinite dimensional Riemannian face spaces and other aspects of face perception. In Computacional, Geometric and Process Perspectives on Facial Cognition: Contexs and Challenges; Wenger, M.J., Townsend, J.T., Eds.; Society for Mathematical Psychology: Washington, DC, USA, 2001; pp. 39–82. [Google Scholar]
- Trivellato, B. Deformed exponentials and applications to finance. Entropy 2013, 15, 3471–3489. [Google Scholar] [CrossRef]
- Pistone, G.; Sempi, C. An infinite-dimensional geometric structure on the space of all the probability measures equivalent to a given one. Ann. Stat. 1995, 23, 1543–1561. [Google Scholar] [CrossRef]
- Pistone, G.; Rogantin, M.P. The exponential statistical manifold: Mean parameters, orthogonality and space transformations. Bernoulli 1999, 5, 721–760. [Google Scholar] [CrossRef]
- Gibilisco, P.; Pistone, G. Connections on Non-Parametric Statistical Manifolds by Orlicz Space Geometry. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1998, 1, 325–347. [Google Scholar] [CrossRef]
- Grasselli, M.R. Dual connections in nonparametric classical information geometry. Ann. Inst. Statist. Math. 2010, 62, 873–896. [Google Scholar] [CrossRef]
- Cena, A.; Pistone, G. Exponential statistical manifold. Ann. Inst. Statist. Math. 2007, 59, 27–56. [Google Scholar] [CrossRef]
- Santacroce, M.; Siri, P.; Trivellato, B. New results on mixture and exponential models by Orlicz spaces. Bernoulli 2016, 22, 1431–1447. [Google Scholar] [CrossRef]
- Santacroce, M.; Siri, P.; Trivellato, B. On Mixture and Exponential Connection by Open Arcs. In Geometric Science of Information; Nielsen, F., Barbaresco, F., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 577–584. [Google Scholar]
- Pistone, G. Examples of the application of nonparametric information geometry to statistical physics. Entropy 2013, 15, 4042–4065. [Google Scholar] [CrossRef]
- Pistone, G. kappa-exponential models from the geometrical viewpoint. Eur. Phys. J. B 2009, 70, 29–37. [Google Scholar] [CrossRef]
- Kaniadakis, G. Non-linear kinetics underlying generalized statistics. Phys. A Stat. Mech. Appl. 2001, 296, 405–425. [Google Scholar] [CrossRef]
- Vigelis, R.F.; Cavalcante, C.C. On ϕ-families of probability distributions. J. Theoret. Probab. 2013, 26, 870–884. [Google Scholar] [CrossRef]
- Pistone, G. Nonparametric information geometry. In Geometric Science of Information; Lecture Notes in Comput. Sci.; Springer: Heidelberg, Germany, 2013; Volume 8085, pp. 5–36. [Google Scholar]
- Naudts, J. Generalised Thermostatistics; Springer-London, Ltd.: London, UK, 2011. [Google Scholar]
- Vigelis, R.F.; de Andrade, L.H.F.; Cavalcante, C.C. On the Existence of Paths Connecting Probability Distributions. In Proceedings of the Geometric Science of Information: Third International Conference, GSI 2017, Paris, France, 7–9 November 2017; Nielsen, F., Barbaresco, F., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 801–808. [Google Scholar]
- Musielak, J. Orlicz Spaces and Modular Spaces; Lecture Notes in Mathematics; Springer: Berlin, Germany, 1983; Volume 1034. [Google Scholar]
- Vigelis, R.F.; Cavalcante, C.C. The Δ2-condition and ϕ-families of probability distributions. In Geometric Science of Information; Lecture Notes in Comput. Sci.; Springer: Heidelberg, Germany, 2013; Volume 8085, pp. 729–736. [Google Scholar]
- Hudzik, H.; Zbaszyniak, Z. Smoothness in Musielak-Orlicz spaces equipped with the Orlicz norm. Collect. Math. 1997, 48, 543–561. [Google Scholar]
- Vigelis, R.F.; Cavalcante, C.C. Smoothness of the Orlicz norm in Musielak-Orlicz function spaces. Math. Nachr. 2014, 287, 1025–1041. [Google Scholar] [CrossRef]
- de Souza, D.C.; Vigelis, R.F.; Cavalcante, C.C. Geometry Induced by a Generalization of Rényi Divergence. Entropy 2016, 18, 407. [Google Scholar] [CrossRef]
- De Andrade, L.H.F.; Vigelis, R.F.; Vieira, F.L.J.; Cavalcante, C.C. Normalization and ϕ-function: Definition and Consequences. In Proceedings of the Geometric Science of Information: Third International Conference, GSI 2017, Paris, France, 7–9 November 2017; Nielsen, F., Barbaresco, F., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 231–238. [Google Scholar]
- Asplund, E.; Rockafellar, R.T. Gradients of convex functions. Trans. Am. Math. Soc. 1969, 139, 443–467. [Google Scholar] [CrossRef]
- Barbu, V.; Precupanu, T. Convexity and Optimization in Banach Spaces, 4th ed.; Springer Monographs in Mathematics; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Brø ndsted, A.; Rockafellar, R.T. On the subdifferentiability of convex functions. Proc. Am. Math. Soc. 1965, 16, 605–611. [Google Scholar] [CrossRef]
- Bauschke, H.H.; Borwein, J.M.; Combettes, P.L. Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces. Commun. Contemp. Math. 2001, 3, 615–647. [Google Scholar] [CrossRef]
- Borwein, J.M.; Vanderwerff, J.D. Convex functions: Constructions, characterizations and counterexamples. In Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 2010; Volume 109. [Google Scholar]
- Vigelis, R.F. On Musielak-Orlicz Spaces and Applications to Information Geometry. Ph.D. Thesis, Department of Teleinformatics Engineering, Federal University of Ceará, Fortaleza, Brazil, 2011. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Andrade, L.H.F.; Vieira, F.L.J.; Vigelis, R.F.; Cavalcante, C.C. Mixture and Exponential Arcs on Generalized Statistical Manifold. Entropy 2018, 20, 147. https://doi.org/10.3390/e20030147
De Andrade LHF, Vieira FLJ, Vigelis RF, Cavalcante CC. Mixture and Exponential Arcs on Generalized Statistical Manifold. Entropy. 2018; 20(3):147. https://doi.org/10.3390/e20030147
Chicago/Turabian StyleDe Andrade, Luiza H. F., Francisca L. J. Vieira, Rui F. Vigelis, and Charles C. Cavalcante. 2018. "Mixture and Exponential Arcs on Generalized Statistical Manifold" Entropy 20, no. 3: 147. https://doi.org/10.3390/e20030147
APA StyleDe Andrade, L. H. F., Vieira, F. L. J., Vigelis, R. F., & Cavalcante, C. C. (2018). Mixture and Exponential Arcs on Generalized Statistical Manifold. Entropy, 20(3), 147. https://doi.org/10.3390/e20030147