Thermodynamic Properties of a Regular Black Hole in Gravity Coupling to Nonlinear Electrodynamics
Abstract
:1. Introduction
2. Thermodynamic Properties of NED Black Hole
3. Thermodynamic Geometry of NED Black Hole
4. Discussions
Acknowledgments
Conflicts of Interest
References
- Bekenstein, J.D. Black Holes and Entropy. Phys. Rev. D 1973, 7, 2333. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Generalized second law of thermodynamics in black-hole physics. Phys. Rev. D 1974, 9, 3292. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle Creation by Black Holes. Commun. Math. Phys. 1975, 43, 199. [Google Scholar] [CrossRef]
- Wald, R.M. The Thermodynamics of Black Holes. Living Rev. Rel. 2001, 4, 6. [Google Scholar] [CrossRef] [PubMed]
- Hooft, G. On the quantum structure of a black hole. Nucl. Phys. 1985, B256, 727. [Google Scholar] [CrossRef]
- Weinhold, F. Metric geometry of equilibrium thermodynamics. J. Chem. Phys. 1975, 63, 2479. [Google Scholar] [CrossRef]
- Ruppeiner, G. Thermodynamics: A Riemannian geometric model. Phys. Rev. A 1979, 20, 1608. [Google Scholar] [CrossRef]
- Ruppeiner, G. Riemannian geometry in thermodynamic fluctuation theory. Rev. Mod. Phys. 1995, 67, 605, Erratum in 1996, 68, 313. [Google Scholar] [CrossRef]
- Ruppeiner, G. Thermodynamic curvature and phase transitions in Kerr-Newman black holes. Phys. Rev. D 2008, 78, 024016. [Google Scholar] [CrossRef]
- Li, G.Q.; Mo, J.X. Phase transition and thermodynamic geometry of f(R) AdS black holes in the grand canonical ensemble. Phys. Rev. D 2016, 93, 124021. [Google Scholar] [CrossRef]
- Soroushfar, S.; Saffari, R.; Kamvar, N. Thermodynamic geometry of black holes in f(R) gravity. Eur. Phys. J. C 2016, 76, 476. [Google Scholar] [CrossRef]
- Sahay, A. Restricted thermodynamic fluctuations and the Ruppeiner geometry of black holes. Phys. Rev. D 2017, 95, 064002. [Google Scholar] [CrossRef]
- Hendi, S.H.; Sheykhi, A.; Panahiyan, S.; Panah, B.E. Phase transition and thermodynamic geometry of Einstein–Maxwell-dilaton black holes. Phys. Rev. D 2015, 92, 064028. [Google Scholar] [CrossRef]
- Zhang, J.L.; Cai, R.G.; Yu, H.W. Phase transition and thermodynamical geometry of Reissner-Nordström-AdS black holes in extended phase space. Phys. Rev. D 2015, 91, 044028. [Google Scholar] [CrossRef]
- Mansoori, S.A.H.; Mirza, B.; Fazel, M. Hessian matrix, specific heats, Nambu brackets, and thermodynamic geometry. J. High Energy Phys. 2015, 4, 115. [Google Scholar] [CrossRef]
- Zhang, J.L.; Cai, R.G.; Yu, H.W. Phase transition and thermodynamical geometry for Schwarzschild AdS black hole in AdS5 × S5 spacetime. J. High Energy Phys. 2015, 2, 143. [Google Scholar] [CrossRef]
- Suresh, J.; Tharanath, R.; Varghese, N.; Kuriakose, V.C. The thermodynamics and thermodynamic geometry of the Park black hole. Eur. Phys. J. C 2014, 74, 2819. [Google Scholar] [CrossRef]
- Han, Y.W.; Chen, G.; Lan, M.J. Legendre transformations and the thermodynamic geometry of 5D black holes. Chin. Phys. C 2013, 37, 035101. [Google Scholar] [CrossRef]
- Wei, S.W.; Liu, Y.X. Critical phenomena and thermodynamic geometry of charged Gauss–Bonnet AdS black holes. Phys. Rev. D 2013, 87, 044014. [Google Scholar] [CrossRef]
- Lala, A.; Roychowdhury, D. Ehrenfest’s scheme and thermodynamic geometry in Born-Infeld AdS black holes. Phys. Rev. D 2012, 86, 084027. [Google Scholar] [CrossRef]
- Bellucci, S.; Tiwari, B.N. Thermodynamic geometry and topological Einstein–Yang–Mills black holes. Entropy 2012, 14, 1045–1078. [Google Scholar] [CrossRef]
- Biswas, R.; Chakraborty, S. Black hole thermodynamics in Horava Lifshitz gravity and the related geometry. Astrophys. Space Sci. 2011, 332, 193–199. [Google Scholar] [CrossRef]
- Niu, C.; Tian, Y.; Wu, X.N. Critical phenomena and thermodynamic geometry of Reissner-Nordström-anti-de Sitter black holes. Phys. Rev. D 2012, 85, 024017. [Google Scholar] [CrossRef]
- Akbar, M.; Quevedo, H.; Saifullah, K.; Sanchez, A.; Taj, S. Thermodynamic geometry of charged rotating BTZ black holes. Phys. Rev. D 2011, 83, 084031. [Google Scholar] [CrossRef]
- Sahay, A.; Sarkar, T.; Sengupta, G. On the phase structure and thermodynamic geometry of R-charged black holes. J. High Energy Phys. 2010, 2010, 125. [Google Scholar] [CrossRef]
- Banerjee, R.; Ghosh, S.; Roychowdhury, D. New type of phase transition in Reissner Nordström–AdS black hole and its thermodynamic geometry. Phys. Lett. B 2011, 696, 156–162. [Google Scholar] [CrossRef]
- Banerjee, R.; Modak, S.K.; Samanta, S. Second order phase transition and thermodynamic geometry in Kerr–AdS black holes. Phys. Rev. D 2011, 84, 064024. [Google Scholar] [CrossRef]
- Sahay, A.; Sarkar, T.; Sengupta, G. On the thermodynamic geometry and critical phenomena of AdS black holes. J. High Energy Phys. 2010, 2010, 82. [Google Scholar] [CrossRef]
- Wei, S.W.; Liu, Y.X.; Wang, Y.Q.; Guo, H. Thermodynamic geometry of black hole in the deformed Hořava–Lifshitz gravity. Europhys. Lett. 2012, 99, 20004. [Google Scholar] [CrossRef]
- Biswas, R.; Chakraborty, S. Black holes in the Einstein–Gauss–Bonnet theory and the geometry of their thermodynamics—II. Astrophys. Space Sci. 2010, 326, 39. [Google Scholar] [CrossRef]
- Bellucci, S.; Tiwari, B.N. On the microscopic perspective of black branes thermodynamic geometry. Entropy 2010, 12, 2097–2143. [Google Scholar] [CrossRef]
- Sarkar, T.; Sengupta, G.; Tiwari, B.N. Thermodynamic geometry and extremal black holes in string theory. J. High Energy Phys. 2008, 810, 76. [Google Scholar] [CrossRef]
- Myung, Y.S.; Kim, Y.W.; Park, Y.J. Ruppeiner geometry and 2D dilaton gravity in the thermodynamics of black holes. Phys. Lett. B 2008, 663, 342–350. [Google Scholar] [CrossRef]
- Quevedo, H.; Vazquez, A. The geometry of thermodynamics. AIP Conf. Proc. 2008, 977, 165–172. [Google Scholar]
- Sarkar, T.; Sengupta, G.; Tiwari, B.N. On the thermodynamic geometry of BTZ black holes. J. High Energy Phys. 2006, 611, 15. [Google Scholar] [CrossRef]
- Shen, J.Y.; Cai, R.G.; Wang, B.; Su, R.K. Thermodynamic geometry and critical behavior of black holes. Int. J. Mod. Phys. A 2007, 22, 11–27. [Google Scholar] [CrossRef]
- Åman, J.; Bengtsson, I.; Pidokrajt, N. Geometry of black hole thermodynamics. Gen. Rel. Grav. 2003, 35, 1733–1743. [Google Scholar] [CrossRef]
- Hendi, S.H.; Li, G.Q.; Mo, J.X.; Panahiyan, S.; Panah, B.E. New perspective for black hole thermodynamics in Gauss–Bonnet-Born-Infeld massive gravity. Eur. Phys. J. C 2016, 76, 571. [Google Scholar] [CrossRef]
- Ayón-Beato, E.; García, A. Regular black hole in general relativity coupled to nonlinear electrodynamics. Phys. Rev. Lett. 1998, 80, 5056. [Google Scholar] [CrossRef]
- Balart, L.; Vagenas, E.C. Regular black holes with a nonlinear electrodynamics source. Phys. Rev. D 2014, 90, 124045. [Google Scholar] [CrossRef]
- Ayon-Beato, E.; Garcia, A. Four-parametric regular black hole solution. Gen. Rel. Grav. 2005, 37, 635–641. [Google Scholar] [CrossRef]
- Bronnikov, K.A. Regular magnetic black holes and monopoles from nonlinear electrodynamics. Phys. Rev. D 2001, 63, 044005. [Google Scholar] [CrossRef]
- Wang, P. Horizon entropy in modified gravity. Phys. Rev. D 2005, 72, 024030. [Google Scholar] [CrossRef]
- Vollick, D.N. Noether charge and black hole entropy in modified theories of gravity. Phys. Rev. D 2007, 76, 124001. [Google Scholar] [CrossRef]
- Hendi, S.H.; Panah, B.E.; Panahiyan, S. Thermodynamical structure of AdS black holes in massive gravity with stringy gauge-gravity corrections. Class. Quant. Gravit. 2016, 33, 235007. [Google Scholar] [CrossRef]
- Briscese, F.; Elizalde, E. Black hole entropy in modified-gravity models. Phys. Rev. D 2008, 77, 044009. [Google Scholar] [CrossRef]
- Saini, A.; Stojkovic, D. Nonlocal (but also nonsingular) physics at the last stages of gravitational collapse. Phys. Rev. D 2014, 89, 044003. [Google Scholar] [CrossRef]
- Myung, Y.S. Entropy of a black hole in infinite-derivative gravity. Phys. Rev. D 2017, 95, 106003. [Google Scholar] [CrossRef]
- Culetu, H. On a regular charged black hole with a nonlinear electric source. Int. J. Theor. Phys. 2015, 54, 2855–2863. [Google Scholar] [CrossRef]
- Salazar, H.; García, A.; Plebański, J. Duality rotations and type D solutions to Einstein equations with nonlinear electromagnetic sources. J. Math. Phys. 1987, 28, 2171–2181. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Regular multihorizon black holes in modified gravity with nonlinear electrodynamics. Phys. Rev. D 2017, 96, 104008. [Google Scholar] [CrossRef]
- Fan, Z.Y.; Wang, X. Construction of regular black holes in general relativity. Phys. Rev. D 2016, 94, 124027. [Google Scholar] [CrossRef]
- Misner, C.M.; Sharp, D.H. Relativistic Equations for Adiabatic, Spherically Symmetric Gravitational Collapse. Phys. Rev. 1964, 136, B571. [Google Scholar] [CrossRef]
- Parikh, M.K. Volume of black holes. Phys. Rev. D 2006, 73, 124201. [Google Scholar] [CrossRef]
- Cai, R.G.; Hu, Y.P.; Pan, Q.Y.; Zhang, Y.L. Thermodynamics of black holes in massive gravity. Phys. Rev. D 2015, 91, 024032. [Google Scholar] [CrossRef]
- Wei, Y.H.; Cui, X.; Zhao, J.X. Thermodynamic Properties and Thermodynamic Geometries of Black p-Branes. Commun. Theor. Phys. 2016, 65, 28. [Google Scholar]
- Myung, Y.S.; Kim, Y.W.; Park, Y.J. Thermodynamics of regular black hole. Gen. Rel. Grav. 2009, 41, 1051–1067. [Google Scholar] [CrossRef]
- Ruppeiner, G. Some Early Ideas on the Metric Geometry of Thermodynamics. J. Low Temp. Phys. 2016, 185, 246–261. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.-H. Thermodynamic Properties of a Regular Black Hole in Gravity Coupling to Nonlinear Electrodynamics. Entropy 2018, 20, 192. https://doi.org/10.3390/e20030192
Wei Y-H. Thermodynamic Properties of a Regular Black Hole in Gravity Coupling to Nonlinear Electrodynamics. Entropy. 2018; 20(3):192. https://doi.org/10.3390/e20030192
Chicago/Turabian StyleWei, Yi-Huan. 2018. "Thermodynamic Properties of a Regular Black Hole in Gravity Coupling to Nonlinear Electrodynamics" Entropy 20, no. 3: 192. https://doi.org/10.3390/e20030192
APA StyleWei, Y. -H. (2018). Thermodynamic Properties of a Regular Black Hole in Gravity Coupling to Nonlinear Electrodynamics. Entropy, 20(3), 192. https://doi.org/10.3390/e20030192