Nonlinear Kinetics on Lattices Based on the Kinetic Interaction Principle
Abstract
:1. Introduction
2. Kinetic Interaction Principle and Master Equation
2.1. Nonlinear Fokker–Planck Kinetics in One Dimension
2.2. The Master Equation
2.3. The Kinetic Interaction Principle
2.4. Incoming and Outgoing Lattice Currents
2.5. Continuity form of the Master Equation
3. The Nonlinear Fokker–Planck Current
3.1. Lattice Expression of the Fokker–Planck Current
3.2. Continuum Limit Expression of the Fokker–Planck Current
4. Fokker–Planck Equation and Discretization Schemes
4.1. Temporal Discretization
4.2. Linear Kinetics Regime
4.3. Nonlinear Kinetics
5. Drift Current and Diffusion in Nonlinear Kinetics
5.1. Nonlinear Drift and Fick Currents
5.2. Nonlinear Kinetics with Fickian Diffusion
5.3. The Case of Kappa Kinetics
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kaniadakis, G. Non-linear kinetics underlying generalized statistics. Phys. A Stat. Mech. Appl. 2001, 296, 405–425. [Google Scholar] [CrossRef] [Green Version]
- Risken, H. Solutions of the Kramers Equation. In The Fokker–Planck Equation, 2nd ed.; Haken, H., Ed.; Springer Series in Synergetics; Springer: Berlin/Heidelberg, Germany, 1984; Volume 18, ISBN 0-387-50498-2. [Google Scholar]
- Kaniadakis, G.; Quarati, P.; Scarfone, A.M. Kinetical foundations of non-conventional statistics. Phys. A Stat. Mech. Appl. 2002, 305, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Kaniadakis, G.; Scarfone, A.M.; Sparavigna, A.; Wada, T. Composition law of κ-entropy for statistically independent systems. Phys. Rev. E 2017, 95, 052112. [Google Scholar] [CrossRef] [PubMed]
- Silva, R. The relativistic statistical theory and Kaniadakis entropy: An approach through a molecular chaos hypothesis. Eur. Phys. J. B 2006, 54, 499–502. [Google Scholar] [CrossRef]
- Naudts, J. Deformed exponentials and logarithms in generalized thermostatistics. Phys. A Stat. Mech. Appl. 2002, 316, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Topsoe, F. Entropy and equilibrium via games of complexity. Phys. A Stat. Mech. Appl. 2004, 340, 11–31. [Google Scholar] [CrossRef] [Green Version]
- Tempesta, P. Group entropies, correlation laws, and zeta functions. Phys. Rev. E 2011, 84, 021121. [Google Scholar] [CrossRef] [PubMed]
- Scarfone, A.M. Entropic Forms and Related Algebras. Entropy 2013, 15, 624–649. [Google Scholar] [CrossRef] [Green Version]
- Souza, N.T.C.M.; Anselmo, D.H.A.L.; Silva, R.; Vasconcelos, M.S.; Mello, V.D. Analysis of fractal groups of the type d-(m, r)-Cantor within the framework of Kaniadakis statistics. Phys. Lett. A 2014, 378, 1691–1694. [Google Scholar] [CrossRef]
- Scarfone, A.M. On the κ-deformed cyclic functions and the generalized Fourier series in the framework of the κ-algebra. Entropy 2015, 17, 2812–2833. [Google Scholar] [CrossRef]
- Scarfone, A.M. κ-deformed Fourier transform. Phys. A Stat. Mech. Appl. 2017, 480, 63. [Google Scholar] [CrossRef]
- Wada, T. Thermodynamic stabilities of the generalized Boltzmann entropies. Phys. A Stat. Mech. Appl. 2004, 340, 126–130. [Google Scholar] [CrossRef]
- Scarfone, A.M.; Wada, T. Canonical partition function for anomalous systems described by the κ-entropy. Prog. Theor. Phys. Suppl. 2006, 162, 45–52. [Google Scholar] [CrossRef]
- Scarfone, A.M.; Wada, T. Legendre structure of κ-thermostatistics revisited in the framework of information geometry. J. Phys. A 2014, 47, 275002. [Google Scholar] [CrossRef]
- Bento, E.P.; Viswanathan, G.M.; da Luz, M.G.E.; Silva, R. Third law of thermodynamics as a key test of generalized entropies. Phys. Rev. E 2015, 91, 022105. [Google Scholar] [CrossRef] [PubMed]
- Wada, T.; Matsuzoe, H.; Scarfone, A.M. Dualistic Hessian structures among the thermodynamic potentials in the κ-thermostatistics. Entropy 2015, 17, 7213–7229. [Google Scholar] [CrossRef]
- Santos, A.P.; Silva, R.; Alcaniz, J.S.; Anselmo, D.H.A.L. Kaniadakis statistics and the quantum H-theorem. Phys. Lett. A 2011, 375, 352–355. [Google Scholar] [CrossRef]
- Ourabah, K.; Tribeche, M. Planck radiation law and Einstein coefficients reexamined in Kaniadakis kappa statistics. Phys. Rev. E 2014, 89, 062130. [Google Scholar] [CrossRef] [PubMed]
- Lourek, I.; Tribeche, M. Thermodynamic properties of the blackbody radiation: A Kaniadakis approach. Phys. Lett. A 2017, 381, 452–456. [Google Scholar] [CrossRef]
- Ourabah, K.; Hamici-Bendimerad, A.H.; Tribeche, M. Quantum Kaniadakis entropy under projective measurement. Phys. Rev. E 2015, 92, 032114. [Google Scholar] [CrossRef] [PubMed]
- Ourabah, K.; Hamici-Bendimerad, A.H.; Tribeche, M. Quantum entanglement and Kaniadakis entropy. Phys. Scr. 2015, 90, 045101. [Google Scholar] [CrossRef]
- Lourek, I.; Tribeche, M. On the role of the κ-deformed Kaniadakis distribution in nonlinear plasma waves. Phys. A Stat. Mech. Appl. 2016, 441, 215–220. [Google Scholar] [CrossRef]
- Gougam, L.A.; Tribeche, M. Electron-acoustic waves in a plasma with a κ-deformed Kaniadakis electron distribution. Phys. Plasmas 2016, 23, 014501. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, S.X.; Liu, S.Q. The longitudinal plasmas modes of κ-deformed Kaniadakis distributed plasmas. Phys. Plasmas 2017, 24, 022125. [Google Scholar] [CrossRef]
- Lopez, R.A.; Navarro, R.E.; Pons, S.I.; Araneda, J.A. Landau damping in Kaniadakis and Tsallis distributed electron plasmas. Phys. Plasmas 2017, 24, 102119. [Google Scholar] [CrossRef]
- Saha, A.; Tamang, J. Qualitative analysis of the positron-acoustic waves in electron-positron-ion plasmas with kappa deformed Kaniadakis distributed electrons and hot positrons. Phys. Plasmas 2017, 24, 082101. [Google Scholar] [CrossRef]
- Guedes, G.; Goncalves, A.C.; Palma, D.A.P. Doppler Broadening Function using the Kaniadakis distribution. Ann. Nucl. Energy 2017, 110, 453–458. [Google Scholar] [CrossRef]
- Carvalho, J.C.; Silva, R.; do Nascimento, J.D., Jr.; De Medeiros, J.R. Power law statistics and stellar rotational velocities in the Pleiades. Europhys. Lett. 2008, 84, 59001. [Google Scholar] [CrossRef]
- Carvalho, J.C.; do Nascimento, J.D., Jr.; Silva, R.; De Medeiros, J.R. Non-gaussian statistics and stellar rotational velocities of main sequence field stars. Astrophys. J. Lett. 2009, 696, L48–L51. [Google Scholar] [CrossRef]
- Carvalho, J.C.; Silva, R.; do Nascimento, J.D., Jr.; Soares, B.B.; De Medeiros, J.R. Observational measurement of open stellar clusters: A test of Kaniadakis and Tsallis statistics. Europhys. Lett. 2010, 91, 69002. [Google Scholar] [CrossRef]
- Cure, M.; Rial, D.F.; Christen, A.; Cassetti, J. A method to deconvolve stellar rotational velocities. Astron. Astrophys. 2014, 565, A85. [Google Scholar] [CrossRef]
- Abreu, E.M.C.; Neto, J.A.; Barboza, E.M.; Nunes, R.C. Jeans instability criterion from the viewpoint of Kaniadakis’ statistics. Europhys. Lett. 2016, 114, 55001. [Google Scholar] [CrossRef]
- Abreu, E.M.C.; Neto, J.A.; Barboza, E.M.; Nunes, R.C. Tsallis and Kaniadakis statistics from the viewpoint of entropic gravity formalism. Int. J. Mod. Phys. 2017, 32, 1750028. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zhang, S.X.; Liu, S.Q. Jeans gravitational instability with κ-deformed Kaniadakis distribution. Chin. Phys. Lett. 2017, 34, 075101. [Google Scholar] [CrossRef]
- Oreste, P.; Spagnoli, G. Statistical analysis of some main geomechanical formulations evaluated with the Kaniadakis exponential law. Geomech. Geoeng. 2018, 13, 139–145. [Google Scholar] [CrossRef]
- Souza, N.T.C.M.; Anselmo, D.H.A.L.; Silva, R.; Vasconcelos, M.S.; Mello, V.D. A κ-statistical analysis of the Y-chromosome. Europhys. Lett. 2014, 108, 38004. [Google Scholar] [CrossRef]
- Macedo-Filho, A.; Moreira, D.A.; Silva, R.; da Silva, L.R. Maximum entropy principle for Kaniadakis statistics and networks. Phys. Lett. A 2013, 377, 842–846. [Google Scholar] [CrossRef]
- Stella, M.; Brede, M. A κ-deformed model of growing complex networks with fitness. Phys. A Stat. Mech. Appl. 2014, 407, 360–368. [Google Scholar] [CrossRef] [Green Version]
- Clementi, F.; Gallegati, M.; Kaniadakis, G. A κ-generalized statistical mechanics approach to income analysis. J. Stat. Mech. 2009, 2009, P02037. [Google Scholar] [CrossRef]
- Bertotti, M.L.; Modenese, G. Exploiting the flexibility of a family of models for taxation and redistribution. Eur. Phys. J. B 2012, 85, 261–270. [Google Scholar] [CrossRef]
- Modanese, G. Common origin of power-law tails in income distributions and relativistic gases. Phys. Lett. A 2016, 380, 29–32. [Google Scholar] [CrossRef] [Green Version]
- Bertotti, M.L.; Modanesi, G. Statistics of Binary Exchange of Energy or Money. Entropy 2017, 15, 465. [Google Scholar] [CrossRef]
- Trivellato, B. The minimal κ-entropy martingale measure. Int. J. Theor. Appl. Finance 2012, 15, 1250038. [Google Scholar] [CrossRef]
- Trivellato, B. Deformed exponentials and applications to finance. Entropy 2013, 15, 3471–3489. [Google Scholar] [CrossRef]
- Tapiero, O.J. A maximum (non-extensive) entropy approach to equity options bid-ask spread. Phys. A Stat. Mech. Appl. 2013, 392, 3051–3060. [Google Scholar] [CrossRef]
- Moretto, E.; Pasquali, S.; Trivellato, B. A non-Gaussian option pricing model based on Kaniadakis exponential deformation. Eur. Phys. J. B 2017, 90, 179. [Google Scholar] [CrossRef]
- Bouchaud, J.-P.; Georges, A. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Phys. Rep. 1990, 195, 127–293. [Google Scholar] [CrossRef]
- Malakhov, A.N.; Pankratov, A.L. Advances in Chemical Physics Volume 121; Prigogine, I., Rice, S.A., Eds.; John Wiley & Sons: New York, NY, USA, 2002; pp. 357–438. ISBN 0-471-20504-4. [Google Scholar]
- Goldenfeld, N. Lectures on Phase Transitions and the Renormalization Group; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Kaniadakis, G.; Quarati, P. Classical model of bosons and fermions. Phys. Rev. E 1994, 49, 5103. [Google Scholar] [CrossRef]
- Plastino, A.R.; Plastino, A. Non-extensive statistical mechanics and generalized Fokker–Planck equation. Phys. A Stat. Mech. Appl. 1995, 222, 347–354. [Google Scholar] [CrossRef]
- Curado, E.M.F.; Nobre, F.D. Derivation of nonlinear Fokker–Planck equations by means of approximations to the master equation. Phys. Rev. E 2003, 67, 021107. [Google Scholar] [CrossRef] [PubMed]
- Nobre, F.D.; Curado, E.M.F.; Rowlands, G. A procedure for obtaining general nonlinear Fokker–Planck equations. Phys. A Stat. Mech. Appl. 2004, 334, 109–118. [Google Scholar] [CrossRef]
- Frank, T.D.; Daffertshofer, A. Nonlinear Fokker–Planck equations whose stationary solutions make entropy-like functionals stationary. Phys. A Stat. Mech. Appl. 1999, 272, 497–508. [Google Scholar] [CrossRef]
- Frank, T.D. Lyapunov and free energy functionals of generalized Fokker–Planck equations. Phys. Lett. A 2001, 290, 93–100. [Google Scholar] [CrossRef]
- Chavanis, P.-H. Generalized thermodynamics and Fokker–Planck equations: Applications to stellar dynamics and two-dimensional turbolence. Phys. Rev. E 2003, 68, 036108. [Google Scholar] [CrossRef] [PubMed]
- Schwammle, V.; Nobre, F.D.; Curado, E.M.F. Consequences of the H theorem from nonlinear Fokker–Planck equations. Phys. Rev. E 2007, 76, 041123. [Google Scholar] [CrossRef] [PubMed]
- Kaniadakis, G.; Delsanto, P.P.; Condat, C.A. A Local interaction simulation approach to the solution of diffusion problems. Math. Comput. Model. 1993, 17, 31–42. [Google Scholar] [CrossRef]
- Huber, D.L. Particle kinetics on one-dimensional lattice with inequivalent sites. Phys. Rev. B 1977, 15, 533. [Google Scholar] [CrossRef]
- Richards, P.M. Theory of one-dimensional hopping conductivity and diffusion. Phys. Rev. B 1977, 16, 1393. [Google Scholar] [CrossRef]
- Hristopulos, D.T.; Muradova, A. Kinetic model of mass exchange with dynamic Arrhenius transition rates. Phys. A Stat. Mech. Appl. 2016, 444, 95–108. [Google Scholar] [CrossRef]
- Hristopulos, D.T.; Leonidakis, L.; Tsetsekou, A. A discrete nonlinear mass transfer equation with applications in solid-state sintering of ceramic materials. Eur. Phys. J. B 2006, 50, 83–87. [Google Scholar] [CrossRef] [Green Version]
- Higham, N. (Ed.) The Princeton Companion to Applied Mathematics; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Larsen, E.W.; Levermore, C.D.; Pomraning, G.C.; Sanderson, J.G. Discretization methods for one-dimensional Fokker–Planck operators. J. Comput. Phys. 1985, 61, 359–390. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaniadakis, G.; Hristopulos, D.T. Nonlinear Kinetics on Lattices Based on the Kinetic Interaction Principle. Entropy 2018, 20, 426. https://doi.org/10.3390/e20060426
Kaniadakis G, Hristopulos DT. Nonlinear Kinetics on Lattices Based on the Kinetic Interaction Principle. Entropy. 2018; 20(6):426. https://doi.org/10.3390/e20060426
Chicago/Turabian StyleKaniadakis, Giorgio, and Dionissios T. Hristopulos. 2018. "Nonlinear Kinetics on Lattices Based on the Kinetic Interaction Principle" Entropy 20, no. 6: 426. https://doi.org/10.3390/e20060426
APA StyleKaniadakis, G., & Hristopulos, D. T. (2018). Nonlinear Kinetics on Lattices Based on the Kinetic Interaction Principle. Entropy, 20(6), 426. https://doi.org/10.3390/e20060426