Probability, Entropy, and Gibbs’ Paradox(es)
Abstract
:1. Introduction
2. What is Thermodynamics?
2.1. The Domain of Thermodynamics
2.2. Limited Experimental Resolution
The laws of thermodynamics ...express the laws of mechanics of such systems as they appear to beings who have not the fineness of perception to enable them to appreciate quantities of the order of magnitude of those which relate to single particles, and who cannot repeat their experiments often enough to obtain any but the most probable results.[6]
2.3. The Purpose of Thermodynamics
The single, all-encompassing problem of thermodynamics is the determination of the equilibrium state that eventually results after the removal of internal constraints in a closed, composite system.
2.4. The Postulates of Thermodynamics
Postulate 1: Equilibrium StatesThere exist equilibrium states of a macroscopic system that are characterized uniquely by a small number of extensive variables.
Postulate 2: Entropy MaximizationThe values assumed by the extensive parameters of an isolated composite system in the absence of an internal constraint are those that maximize the entropy over the set of all constrained macroscopic states.
Postulate 3: AdditivityThe entropy of a composite system is additive over the constituent subsystems. The entropies of two systems are additive when .
Postulate 4: Continuity and differentiabilityThe entropy is a continuous and differentiable function of the extensive parameters.
Postulate 5: ExtensivityThe entropy is an extensive function of the extensive variables. The entropy of a system is extensive when .
Postulate 6: MonotonicityThe entropy is a monotonically increasing function of the energy for equilibrium values of the energy.
Postulate 7: Nernst PostulateThe entropy of any system is non-negative.
2.5. The Neglect of the Energy Dependence for This Discussion
2.6. The Models Used in This Paper
3. Definition of Entropy
The dependence of the entropy on the number of molecules can never be found from studying closed systems.[17]
As a matter of elementary logic, no theory can determine the dependence of entropy on the size N of a system unless it makes some statement about a process where N changes.[18]
3.1. Exchanging Particles or Volume
3.2. Measurable Difference
3.3. Initial Probability Distribution of Particles
3.4. Definition of the Boltzmann Entropy
3.5. Exchange of Particles of a Single Kind
3.6. Exchange of Particles of More than One Kind
3.7. Other Treatments without Quantum Mechanics
First, not all reasonable-sounding definitions of entropy for classically distinguishable particles are equivalent: some are right and some are wrong. Second, experiments on colloidal suspensions can resolve with striking clarity what the right definitions are.[23]
4. Refining the Definition of Entropy
4.1. Justification of the Grand Canonical Entropy
4.2. The Grand Canonical Entropy of the Classical Ideal Gas
5. Resolution of the Paradoxes
5.1. The First Gibbs’ Paradox
5.2. The Second Gibbs’ Paradox
6. Conclusions
Funding
Conflicts of Interest
Appendix A. Derivation of the Entropy Using Two Systems
Appendix B. The Grand Canonical Entropy of the Ideal Gas
Appendix B.1. The Canonical Entropy
Appendix B.2. The Grand Canonical Entropy
References
- Gibbs, J.W. On the equilibrium of heterogeneous substances. Trans. Conn. Acad. Arts Sci. 1879, III, 108–248. [Google Scholar] [CrossRef]
- Neumann, C. Bemerkungen zur mechanischen Theorie der Wärme. Ber. d. Sächs. Ges. d. Wiss. Math. Phys. 1891, 43, 75–156. (In German) [Google Scholar]
- Duhem, M.P. Sur la Dissociation Dans les Systèmes qui Renferment un Mélange de gaz Parfaits; Au siège des Facultés: Lille, France, 1892. (In French) [Google Scholar]
- Boltzmann, L. Über die Beziehung zwischen dem zweiten Hauptsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über das Wärmegleichgewicht. Wien. Ber. 1877, 76, 373–435. [Google Scholar]
- Sharp, K.; Matschinsky, F. Translation of Ludwig Boltzmann’s Paper On the Relationship between the Second Fundamental Theorem of the Mechanical Theory of Heat and Probability Calculations Regarding the Conditions for Thermal Equilibrium, Sitzungberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissen Classe. Abt. II, LXXVI 1877, pp. 373–435 (Wien. Ber. 1877, 76:373–435). Reprinted in Wiss. Abhandlungen, Vol. II, reprint 42, pp. 164–223, Barth, Leipzig, 1909. Entropy 2015, 17, 1971–2009. [Google Scholar]
- Gibbs, J.W. Elementary Principles in Statistical Mechanics; Yale University Press: New Haven, CT, USA, 1902. [Google Scholar]
- Balian, R. From Microphysics to Macrophysics: Methods and Applications of Statistical Physics; Haar, D.; Gregg, J.F., Translators; Springer: Berlin, Germany, 1991; Volume 1. [Google Scholar]
- Callen, H.B. Thermodynamics; Wiley: New York, NY, USA, 1960. [Google Scholar]
- Callen, H.B. Thermodynamics and an Introduction to Thermostatistics, 2nd ed.; Wiley: New York, NY, USA, 1985. [Google Scholar]
- Tisza, L. Generalized Thermodynamics; MIT Press: Cambridge, UK, 1966. [Google Scholar]
- Swendsen, R.H. An Introduction to Statistical Mechanics and Thermodynamics; Oxford University Press: London, UK, 2012. [Google Scholar]
- Swendsen, R.H. The definition of the thermodynamic entropy in statistical mechanics. Physica A 2017, 467, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Swendsen, R.H. Thermodynamics, Statistical Mechanics, and Entropy. Entropy 2017, 19, 603. [Google Scholar] [CrossRef]
- Massieu, M.F. Sur les fonctions caractéristiques des divers fluides. Comptes Rend. Acad. Sci. 1869, 69, 858–862. [Google Scholar]
- Massieu, M.F. Addition au precedent memoire sur les fonctions caractéristiques. Comptes Rend. Acad. Sci. 1869, 69, 1057–1061. [Google Scholar]
- Planck, M. Über das Gesetz der Energieverteilung im Normalspektrum. Drudes Annalen 1901, 553, 65–74. [Google Scholar]
- Van Kampen, N.G. The Gibbs paradox. In Essays in Theoretical Physics; Parry, W.E., Ed.; Pergamon: Oxford, UK, 1984. [Google Scholar]
- Jaynes, E.T. The Gibbs Paradox. In Maximum Entropy and Bayesian Methods; Smith, C.R., Erickson, G.J., Neudorfer, P.O., Eds.; Kluwer Academic Publishers: Heidelberg/Berlin, Germany, 1992; pp. 1–21. [Google Scholar]
- Swendsen, R.H. The ambiguity of ‘distinguishability’ in statistical mechanics. Am. J. Phys. 2015, 83, 545–554. [Google Scholar] [CrossRef]
- Swendsen, R.H. Statistical mechanics of colloids and Boltzmann’s definition of the entropy. Am. J. Phys. 2006, 74, 187–190. [Google Scholar] [CrossRef]
- Frenkel, D. Why colloidal systems can be described by statistical mechanics: Some not very original comments on the Gibbs paradox. Mol. Phys. 2014, 112, 2325–2329. [Google Scholar] [CrossRef]
- Warren, P.B. Combinatorial Entropy and the Statistical Mechanics of Polydispersity. Phys. Rev. Lett. 1998, 80, 1369–1372. [Google Scholar] [CrossRef]
- Cates, M.E.; Manoharan, V.N. Celebrating Soft Matter?s 10th anniversary: Testing the foundations of classical entropy: Colloid experiments. Soft Matter 2015, 11, 6538–6546. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, M.; Berthier, L. Does the configurational entropy of polydisperse particles exist? J. Chem. Phys. 2017, 146, 014502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swendsen, R.H. Statistical mechanics of classical systems with distinguishable particles. J. Stat. Phys. 2002, 107, 1143–1165. [Google Scholar] [CrossRef]
- Swendsen, R.H. Statistical Mechanics Of Classical Distinguishable Particles. In Computer Simulation Studies in Condensed Matter Physics XV; Landau, D.P., Lewis, S.P., Schüttler, H.B., Eds.; Springer: Heidelberg/Berlin, Germany, 2003; pp. 216–219. [Google Scholar]
- Swendsen, R.H. Gibbs’ Paradox and the Definition of Entropy. Entropy 2008, 10, 15–18. [Google Scholar] [CrossRef] [Green Version]
- Swendsen, R.H. Choosing a definition of entropy that works. Found. Phys. 2012, 42, 582–593. [Google Scholar] [CrossRef]
- Swendsen, R.H. Unnormalized Probability: A Different View of Statistical Mechanics. Am. J. Phys. 2014, 82, 941–946. [Google Scholar] [CrossRef]
- Planck, M. Theorie der Wärmestrahlung; J. A. Barth: Leipzig, Germany, 1906; translated into English by Morton Masius, The Theory of Heat Radiation; Dover: New York, NY, USA, 1991. [Google Scholar]
- Versteegh, M.A.M.; Dieks, D. The Gibbs paradox and the distinguishability of identical particles. Am. J. Phys. 2011, 79, 741–746. [Google Scholar] [CrossRef]
- Dieks, D. Is There a Unique Physical Entropy? Micro versus Macro. In New Challenges to Philosophy of Science (The Philosophy of Science in a European Perspective); Andersen, H., Dieks, D., Gonzalez, W., Uebel, T., Wheeler, G., Eds.; Springer: New York, NY, USA, 2013; pp. 23–34. [Google Scholar]
- Dieks, D. The Logic of Identity: Distinguishability and Indistinguishability in Classical and Quantum Physics. Found. Phys. 2014, 44, 1302–1316. [Google Scholar] [CrossRef] [Green Version]
- Swendsen, R.H.; Wang, J.S. Negative temperatures and the definition of entropy. Physica A 2016, 453, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Sethna, J.P. Statistical Mechanics: Entropy, Order Parameters and Complexity; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Khinchin, A.I. Mathematical Foundations of Statistical Mechanics; Dover: New York, NY, USA, 1949. [Google Scholar]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swendsen, R.H. Probability, Entropy, and Gibbs’ Paradox(es). Entropy 2018, 20, 450. https://doi.org/10.3390/e20060450
Swendsen RH. Probability, Entropy, and Gibbs’ Paradox(es). Entropy. 2018; 20(6):450. https://doi.org/10.3390/e20060450
Chicago/Turabian StyleSwendsen, Robert H. 2018. "Probability, Entropy, and Gibbs’ Paradox(es)" Entropy 20, no. 6: 450. https://doi.org/10.3390/e20060450
APA StyleSwendsen, R. H. (2018). Probability, Entropy, and Gibbs’ Paradox(es). Entropy, 20(6), 450. https://doi.org/10.3390/e20060450