Thermodynamic Black Holes
Abstract
:1. Introduction
2. Thermodynamic Information Geometry
2.1. Thermodynamic Fluctuation Theory
2.2. Thermodynamic Information Geometry
2.3. Hyperscaling and the Geometric Equation
2.4. Generalized Homogeneous Functions
3. Canonical Classical Models
3.1. Kerr Black Hole
3.2. Reissner-Nordström Black Hole
3.3. Some General Observations
- As , only if . See Equation (A5). This limit is Hawking’s well-known result.
- The heat capacities start negative. See Figure 3c. This negative start reflects the well-known lack of thermodynamic stability of spherical self-gravitating objects.
- The heat capacities have infinities unconnected with the extremal limit at a single value of . See Figure 3c. These infinities correspond to a change in sign of from negative to positive as z increases. The heat capacities go to zero in the extremal limit .
- The Kerr extremal black hole has thermodynamic curvature . See Figure 3d. In ordinary thermodynamics, the Bose/Fermi ideal quantum gases have R diverging to minus/plus infinity as , and the effects of the quantum statistical interactions become more pronounced [45,46]. as indicates that the conjectured fundamental particles constituting Kerr might be fermionic [33].
- The RN black hole has . See Figure 3d. This result suggests a classical non-quantum ideal gas as constituting the microscopic constituents. Such an idea may strike one as demonstrably unphysical [47] since we associate black holes with strong gravitational interactions. However, the gravitational component might be non-statistical, associated perhaps with the massive, central singularity predicted by general relativity.
- There are no regimes of thermodynamic stability. See Figure 3e,f. In particular, is always negative.
3.4. Additional Comments
4. Calculation Method
5. Results
5.1. General Comments
5.2. The Signs of and
5.3. The Solution Types
5.4. Further Discussion of Solution Types
5.5. Final Remarks about the GE Solutions
6. Model Comparisons
7. Conclusions
Acknowledgments
Conflicts of Interest
Appendix A. General Formulas
References
- Wald, R.M. The Thermodynamics of Black Holes. Living Rev. Relativ. 2001, 4, 6. [Google Scholar] [CrossRef] [PubMed]
- Landau, L.D.; Lifshitz, E.M. Statistical Physics; Elsevier: New York, NY, USA, 1980. [Google Scholar]
- Pathria, R.K.; Beale, P.D. Statistical Mechanics; Butterworth-Heinemann: Oxford, UK, 2011. [Google Scholar]
- Goodstein, D.L. States of Matter; Prentice-Hall: Englewood Cliffs, NJ, USA, 1975. [Google Scholar]
- Sahay, A. Restricted thermodynamic fluctuations and the Ruppeiner geometry of black holes. Phys. Rev. D 2017, 95, 064002. [Google Scholar] [CrossRef] [Green Version]
- Åman, J.E.; Bengtsson, I.; Pidokrajt, N. Thermodynamic Metrics and Black Hole Physics. Entropy 2015, 17, 6503–6518. [Google Scholar] [CrossRef]
- Strominger, A.; Vafa, C. Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B 1996, 379, 99. [Google Scholar] [CrossRef]
- Sen, A. Black hole entropy function, attractors and precision counting of microstates. Gen. Relativ. Gravit. 2008, 40, 2249. [Google Scholar] [CrossRef]
- Benini, F.; Hristov, K.; Zaffaroni, A. Exact microstate counting for dyonic black holes in AdS4. Phys. Lett. B 2017, 771, 462. [Google Scholar] [CrossRef]
- Sarkar, T.; Sengupta, G.; Tiwari, B.N. Thermodynamic geometry and extremal black holes in string theory. J. High Energy Phys. 2008, 10, 076. [Google Scholar] [CrossRef]
- Bellucci, S.; Tiwari, B.N. State-space correlations and stabilities. Phys. Rev. D 2010, 82, 084008. [Google Scholar] [CrossRef]
- Bellucci, S.; Tiwari, B.N. Thermodynamic Geometry and Topological Einstein-Yang-Mills Black Holes. Entropy 2012, 14, 1045–1078. [Google Scholar] [CrossRef]
- Wei, S.-W.; Liu, Y.-X. Insight into the Microscopic Structure of an AdS Black Hole from a Thermodynamical Phase Transition. Phys. Rev. Lett. 2015, 115, 111302. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, P.; Sengupta, G. Thermodynamic geometry and phase transitions of AdS braneworld black holes. Phys. Lett. B 2017, 765, 67. [Google Scholar] [CrossRef]
- Sahay, A.; Sarkar, T.; Sengupta, G. On the phase structure and thermodynamic geometry of R-charged black holes. J. High Energy Phys. 2010, 11, 125. [Google Scholar] [CrossRef]
- Chaturvedi, P.; Das, A.; Sengupta, G. Thermodynamic geometry and phase transitions of dyonic charged AdS black holes. Eur. Phys. J. C 2017, 77, 110. [Google Scholar] [CrossRef]
- Gergely, L.; Pidokrajt, N.; Winitzki, S. Geometro-thermodynamics of tidal charged black holes. Eur. Phys. J. C 2011, 71, 1569. [Google Scholar] [CrossRef]
- Ruppeiner, G. Stability and fluctuations in black hole thermodynamics. Phys. Rev. D 2007, 75, 024037. [Google Scholar] [CrossRef]
- Åman, J.E.; Bengtsson, I.; Pidokrajt, N. Geometry of Black Hole Thermodynamics. Gen. Relativ. Gravit. 2003, 35, 1733. [Google Scholar] [CrossRef]
- Ruppeiner, G. Thermodynamics: A Riemannian geometric model. Phys. Rev. A 1979, 20, 1608. [Google Scholar] [CrossRef]
- Ruppeiner, G. Riemannian geometry in thermodynamic fluctuation theory. Rev. Mod. Phys. 1995, 67, 605. [Google Scholar] [CrossRef]
- Diósi, L.; Salamon, P. From Statistical Distances to Minimally Dissipative Processes. In Thermodynamics of Energy Conversion and Transport; Sieniutycz, S., De Vos, A., Eds.; Springer: New York, NY, USA, 2000. [Google Scholar]
- Weinberg, S. Gravitation and Cosmology; Wiley: New York, NY, USA, 1972. [Google Scholar]
- Ruppeiner, G. Thermodynamic curvature measures interactions. Am. J. Phys. 2010, 78, 1170. [Google Scholar] [CrossRef] [Green Version]
- Ruppeiner, G.; Sahay, A.; Sarkar, T.; Sengupta, G. Thermodynamic geometry, phase transitions, and the Widom line. Phys. Rev. E 2012, 86, 052103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- May, H.-O.; Mausbach, P. Riemannian geometry study of vapor-liquid phase equilibria and supercritical behavior of the Lennard-Jones fluid. Phys. Rev. E 2012, 85, 031201. [Google Scholar] [CrossRef] [PubMed]
- Ruppeiner, G. Thermodynamic curvature from the critical point to the triple point. Phys. Rev. E 2012, 86, 021130. [Google Scholar] [CrossRef] [PubMed]
- Widom, B. The critical point and scaling theory. Physica 1974, 73, 107. [Google Scholar] [CrossRef]
- Ruppeiner, G. Riemannian geometric theory of critical phenomena. Phys. Rev. A 1991, 44, 3583. [Google Scholar] [CrossRef] [PubMed]
- Ruppeiner, G. Riemannian geometric approach to critical points: General theory. Phys. Rev. E 1998, 57, 5135. [Google Scholar] [CrossRef]
- Ruppeiner, G. Unitary Thermodynamics from Thermodynamic Geometry. J. Low Temp. Phys. 2014, 174, 13. [Google Scholar] [CrossRef]
- Ruppeiner, G. Unitary Thermodynamics from Thermodynamic Geometry II: Fit to a Local-Density Approximation. J. Low Temp. Phys. 2015, 181, 77. [Google Scholar] [CrossRef]
- Ruppeiner, G. Thermodynamic curvature and phase transitions in Kerr-Newman black holes. Phys. Rev. D 2008, 78, 024016. [Google Scholar] [CrossRef]
- Ruppeiner, G. Equations of state of large gravitating gas clouds. Astrophys. J. 1996, 464, 547. [Google Scholar] [CrossRef]
- Kaviani, K.; Dalafi-Rezaie, A. Pauli paramagnetic gas in the framework of Riemannian geometry. Phys. Rev. E 1999, 60, 3520. [Google Scholar] [CrossRef]
- Ruppeiner, G. Riemannian geometry of thermodynamics and systems with repulsive power-law interactions. Phys. Rev. E 2005, 72, 016120. [Google Scholar] [CrossRef] [PubMed]
- Ruppeiner, G. Partition function from no microscopics. Unpublished work. 2018. [Google Scholar]
- Stanley, H.E. Scaling, universality, and renormalization: Three pillars of modern critical phenomena. Rev. Mod. Phys. 1999, 71, S358. [Google Scholar] [CrossRef]
- Chamblin, A.; Emparan, R.; Johnson, C.V.; Myers, R.C. Charged AdS black holes and catastrophic holography. Phys. Rev. D 1999, 60, 064018. [Google Scholar] [CrossRef] [Green Version]
- Åman, J.E.; Bengtsson, I.; Pidokrajt, N. Flat information geometries in black hole thermodynamics. Gen. Relativ. Gravit. 2006, 38, 1305. [Google Scholar] [CrossRef]
- Davies, P.C.W. The Thermodynamic Theory of Black Holes. Proc. R. Soc. Lond. A 1977, 353, 499. [Google Scholar] [CrossRef]
- Smarr, L. Mass Formula for Kerr Black Holes. Phys. Rev. Lett. 1973, 30, 71. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gezari, S.; Chornock, R.; Rest, A.; Huber, M.E.; Forster, K.; Berger, E.; Challis, P.J.; Neill, J.D.; Martin, D.C.; Heckman, T.; et al. An ultraviolet-optical flare from the tidal disruption of a helium-rich stellar core. Nature 2012, 485, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janyszek, H.; Mrugała, R. Riemannian geometry and stability of ideal quantum gases. J. Phys. A Math. Gen. 1990, 23, 467. [Google Scholar] [CrossRef]
- Oshima, H.; Obata, T.; Hara, H. Riemann scalar curvature of ideal quantum gasses obeying Gentile’s statistics. J. Phys. A Math. Gen. 1999, 32, 6373. [Google Scholar] [CrossRef]
- Quevedo, H. Geometrothermodynamics of black holes. Gen. Relativ. Gravit. 2008, 40, 971. [Google Scholar] [CrossRef]
- Shen, J.; Cai, R.-G.; Wang, B.; Su, R.-K. Thermodynamic geometry and critical behavior of black holes. Int. J. Mod. Phys. A 2007, 22, 11. [Google Scholar] [CrossRef]
- Sahay, A.; Sarkar, T.; Sengupta, G. On the thermodynamic geometry and critical phenomena of AdS black holes. J. High Energy Phys. 2010, 7, 082. [Google Scholar] [CrossRef]
- Niu, C.; Tian, Y.; Wu, X.-N. Critical phenomena and thermodynamic geometry of Reissner-Nordström-anti-de Sitter black holes. Phys. Rev. D 2012, 85, 024017. [Google Scholar] [CrossRef]
- Cvetič, M.; Nojiri, S.; Odintsov, S.D. Black hole thermodynamics and negative entropy in de Sitter and anti-de Sitter Einstein-Gauss-Bonnet gravity. Nucl. Phys. B 2002, 628, 295. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Regular multihorizon black holes in modified gravity with nonlinear electrodynamics. Phys. Rev. D 2017, 96, 104008. [Google Scholar] [CrossRef] [Green Version]
- Clunan, T.; Ross, S.F.; Smith, D.J. On Gauss-Bonnet black hole entropy. Class. Quantum Grav. 2004, 21, 3447. [Google Scholar] [CrossRef]
- Sahay, A.; Jha, R. Geometry of criticality, supercriticality, and Hawking-Page transitions in Gauss-Bonnet-AdS black holes. Phys. Rev. D 2017, 96, 126017. [Google Scholar] [CrossRef] [Green Version]
- Åman, J.E.; Pidokrajt, N. Geometry of higher-dimensional black hole thermodynamics. Phys. Rev. D 2006, 73, 024017. [Google Scholar] [CrossRef]
- Åman, J.E.; Pidokrajt, N. On explicit thermodynamic functions and extremal limits of Myers-Perry black holes. Eur. Phys. J. C 2013, 73, 2601. [Google Scholar] [CrossRef]
- Zhang, J.-L.; Cai, R.-G.; Yua, H. Phase transition and thermodynamical geometry for Schwarzschild AdS black hole in AdS5× S5 spacetime. J. High Energy Phys. 2015, 2, 143. [Google Scholar] [CrossRef]
- Arcioni, G.; Lozano-Tellechea, E. Stability and critical phenomena of black holes and black rings. Phys. Rev. D 2005, 72, 104021. [Google Scholar] [CrossRef]
- Mirza, B.; Zamaninasab, M. Ruppeiner geometry of RN black holes: flat or curved? J. High Energy Phys. 2007, 6, 059. [Google Scholar] [CrossRef]
- Sahay, A.; Sarkar, T.; Sengupta, G. Thermodynamic geometry and phase transitions in Kerr-Newman-AdS black holes. J. High Energy Phys. 2010, 4, 118. [Google Scholar] [CrossRef]
- Kubizňák, D.; Mann, R.B. P-V criticality of charged AdS black holes. J. High Energy Phys. 2012, 7, 033. [Google Scholar] [CrossRef]
- Dolan, B.P. Intrinsic curvature of thermodynamic potentials for black holes with critical points. Phys. Rev. D 2015, 92, 044013. [Google Scholar] [CrossRef]
- Wei, S.-W.; Liu, Y.-X. Critical phenomena and thermodynamic geometry of charged Gauss-Bonnet AdS black holes. Phys. Rev. D 2013, 87, 044014. [Google Scholar] [CrossRef]
- Wei, S.-W.; Liu, Y.-X.; Wang, Y.-Q.; Guo, H. Thermodynamic geometry of black hole in the deformed Hořava-Lifshitz gravity. EPL Eur. Lett. 2012, 99, 20004. [Google Scholar] [CrossRef] [Green Version]
- Bagher, M.; Poshteh, J.; Riazi, N. Phase transition and thermodynamic stability in extended phase space and charged Hořava-Lifshitz black holes. Gen. Relativ. Gravit. 2017, 49, 64. [Google Scholar]
- Deng, G.-M.; Huang, Y.-C. Q–Φ criticality and microstructure of charged AdS black holes in f(R) gravity. Int. J. Mod. Phys. A 2017, 32, 1750204. [Google Scholar] [CrossRef]
- Li, G.-Q.; Mo, J.-X. Phase transition and thermodynamic geometry of f(R) AdS black holes in the grand canonical ensemble. Phys. Rev. D 2016, 93, 124021. [Google Scholar] [CrossRef]
- Zangeneh, M.K.; Dehyadegari, A.; Mehdizadeh, M.R.; Wang, B.; Sheykhi, A. Thermodynamics, phase transitions and Ruppeiner geometry for Einstein-dilaton-Lifshitz black holes in the presence of Maxwell and Born-Infeld electrodynamics. Eur. Phys. J. C 2017, 77, 423. [Google Scholar] [CrossRef]
- Wei, Y.H. Thermodynamic Properties of a Regular Black Hole in Gravity Coupling to Nonlinear Electrodynamics. Entropy 2018, 20, 192. [Google Scholar] [CrossRef]
- Banerjee, R.; Modak, S.K.; Roychowdhury, D. A unified picture of phase transition: from liquid-vapour systems to AdS black holes. J. High Energy Phys. 2012, 10, 125. [Google Scholar] [CrossRef]
- Lala, A.; Roychowdhury, D. Ehrenfest’s scheme and thermodynamic geometry in Born-Infeld AdS black holes. Phys. Rev. D 2012, 86, 084027. [Google Scholar] [CrossRef]
- Hendi, S.H.; Talezadeh, M.S.; Armanfard, Z. Phase Transition of Black Holes in Brans-Dicke Born-Infeld Gravity through Geometrical Thermodynamics. Adv. High Energy Phys. 2017, 2017, 7158697. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruppeiner, G. Thermodynamic Black Holes. Entropy 2018, 20, 460. https://doi.org/10.3390/e20060460
Ruppeiner G. Thermodynamic Black Holes. Entropy. 2018; 20(6):460. https://doi.org/10.3390/e20060460
Chicago/Turabian StyleRuppeiner, George. 2018. "Thermodynamic Black Holes" Entropy 20, no. 6: 460. https://doi.org/10.3390/e20060460
APA StyleRuppeiner, G. (2018). Thermodynamic Black Holes. Entropy, 20(6), 460. https://doi.org/10.3390/e20060460