Probabilistic Inference for Dynamical Systems
Abstract
:1. Introduction
2. Why Bayesian Inference?
3. Dynamical Evolution of Probabilities
4. Fluid Theories in a Bayesian Formulation
5. Including Particular Knowledge into Our Models
- (1)
- Bayes’ theorem: the posterior distribution is given in terms of the prior byThis method is most useful when is comprised of statements about the states (e.g., boundary conditions).
- (2)
- Principle of maximum entropy: the posterior distribution is the one that maximizes
6. The Maximum Caliber Principle
7. An Illustration: Newtonian Mechanics of Charged Particles
8. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Derivation of the Lorenz Force from the Lagrangian of a Particle in an Electromagnetic Field
References
- Jaynes, E.T. The Minimum Entropy Production Principle. Ann. Rev. Phys. Chem. 1980, 31, 579–601. [Google Scholar] [CrossRef]
- Jaynes, E.T. Clearing up Mysteries—The Original Goal. In Maximum Entropy and Bayesian Methods: Cambridge, England, 1988; Springer: Dordrecht, The Netherlands, 1989; pp. 1–27. [Google Scholar]
- Dewar, R. Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states. J. Phys. A Math. Gen. 2003, 36, 631–641. [Google Scholar] [CrossRef] [Green Version]
- Grandy, W.T. Entropy and the Time Evolution of Macroscopic Systems; Oxford Science Publications: New York, NY, USA, 2008. [Google Scholar]
- Gull, S. Some Misconceptions about Entropy. Available online: http://www.mrao.cam.ac.uk/~steve/maxent2009/images/miscon.pdf (accessed on 11 September 2018).
- Cox, R.T. Probability, frequency and reasonable expectation. Am. J. Phys. 1946, 14, 1–13. [Google Scholar] [CrossRef]
- Jaynes, E.T. Probability Theory: The Logic of Science; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Risken, H. The Fokker-Planck Equation: Methods of Solution and Applications; Springer: Berlin, Germany, 1996. [Google Scholar]
- Van Campen, N.G. Stochastic Processes in Physics and Chemistry; North Holland: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Zwanzig, R. Nonequilibrium Statistical Mechanics; Oxford University Press: New York, NY, USA, 2001. [Google Scholar]
- Van Campen, N.G. The expansion of the master equation. Adv. Chem. Phys 1976, 34, 245–309. [Google Scholar]
- González, D.; Díaz, D.; Davis, S. Continuity equation for probability as a requirement of inference over paths. Eur. Phys. J. B 2016, 89, 214. [Google Scholar] [CrossRef]
- Lamb, H. Hydrodynamics; Dover Books on Physics; Dover Publications: New York, NY, USA, 1945. [Google Scholar]
- Jaynes, E.T. Information Theory and Statistical Mechanics. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Caticha, A.; Giffin, A. Updating Probabilities. AIP Conf. Proc. 2006, 872, 31. [Google Scholar]
- Pressé, S.; Ghosh, K.; Lee, J.; Dill, K.A. Principles of maximum entropy and maximum caliber in statistical physics. Rev. Mod. Phys. 2013, 85, 1115–1141. [Google Scholar] [CrossRef]
- González, D.; Davis, S.; Gutiérrez, G. Newtonian mechanics from the principle of Maximum Caliber. Found. Phys. 2014, 44, 923. [Google Scholar] [CrossRef]
- Davis, S.; González, D. Hamiltonian Formalism and Path Entropy Maximization. J. Phys. A Math. Theor. 2015, 48, 425003. [Google Scholar] [CrossRef]
- Hazoglou, M.J.; Walther, V.; Dixit, P.D.; Dill, K.A. Maximum caliber is a general variational principle for nonequilibrium statistical mechanics. J. Chem. Phys. 2015, 143, 051104. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.; Zhou, G.; Voeltz, V.A. A maximum-caliber approach to predicting perturbed folding kinetics due to mutations. J. Chem. Theory Comput. 2016, 12, 5768–5776. [Google Scholar] [CrossRef] [PubMed]
- Cafaro, C.; Ali, S.A. Maximum caliber inference and the stochastic Ising model. Phys. Rev. E 2016, 94, 052145. [Google Scholar] [CrossRef] [PubMed]
- Dixit, P.; Wagoner, J.; Weistuch, C.; Pressé, S.; Ghosh, K.; Dill, K.A. Perspective: Maximum caliber is a general variational principle for dynamical systems. J. Chem. Phys. 2018, 148, 010901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davis, S.; González, D.; Gutiérrez, G. Probabilistic Inference for Dynamical Systems. Entropy 2018, 20, 696. https://doi.org/10.3390/e20090696
Davis S, González D, Gutiérrez G. Probabilistic Inference for Dynamical Systems. Entropy. 2018; 20(9):696. https://doi.org/10.3390/e20090696
Chicago/Turabian StyleDavis, Sergio, Diego González, and Gonzalo Gutiérrez. 2018. "Probabilistic Inference for Dynamical Systems" Entropy 20, no. 9: 696. https://doi.org/10.3390/e20090696
APA StyleDavis, S., González, D., & Gutiérrez, G. (2018). Probabilistic Inference for Dynamical Systems. Entropy, 20(9), 696. https://doi.org/10.3390/e20090696