Spatio–Temporal Pattern of the Urban System Network in the Huaihe River Basin Based on Entropy Theory
Abstract
:1. Introduction
2. Methods and Data
2.1. Gravity Model
2.2. Efficiency Entropy (EE)
2.3. Quality Entropy (QE)
2.4. System Entropy (SE)
2.5. Data and Processing
2.5.1. Study Area
2.5.2. Data Sources
- Administrative division data: The administrative division data at a scale of 1:4,000,000 [31].
2.5.3. Data Processing and Analysis
3. Results
3.1. Urban System Network in the HRB
3.2. Entropy of Urban System Network
3.2.1. Efficiency Entropy (EE) of Urban System Network
3.2.2. Quality Entropy (QE) of Urban System Network
3.2.3. System Entropy (SE) of Urban System Network
4. Discussion
4.1. Entropy of Urban System Network
4.2. Uncertainty Analysis and Improvement
5. Conclusions
- (1)
- The entropy theory based on the gravity model can express and analyze the network structure and its spatio–temporal patterns of the regional urban system. The QE, EE and SE of the spatial network of an urban system network indicate the validity of the interaction of matter, energy, and information between cities.
- (2)
- The spatial network structure of the regional urban system can be build by the gravity model, and the threshold value of the interaction force between cities of 4 is suitable for the construction of the spatial network of the urban system in the HRB.
- (3)
- The spatial and temporal distribution of the network structure of the urban system in the HRB is uneven. Generally speaking, the northern and eastern regions are superior to the western and southern regions. Spatially, the development of the urban system network in the HRB is unbalanced, showing a layer-by-layer spatial distribution centered on the core city of Xuzhou.
Author Contributions
Funding
Conflicts of Interest
References
- Mayhew, S. Oxford Dictionary of Geography; Shanghai Foreign Language Education Press: Shanghai, China, 2001. [Google Scholar]
- Wu, W.; Zhang, W.; Jin, F.; Deng, Y. Spatio-temporal Analysis of Urban Spatial Interaction in Globalizing China. Chin. Geogr. Sci. 2009, 19, 126–134. [Google Scholar] [CrossRef]
- Getis, A.; Getis, J. Christaller’s Central Place Theory. J. Geogr. 2007, 65, 220–226. [Google Scholar] [CrossRef]
- Lu, D.D. An Analysis of Spatial Structure and Optimal Regional Development. Acta Geogr. Sin. 2001, 56, 127–135. (In Chinese) [Google Scholar]
- Lu, Y.Q. The mechanism of the Model of Dual-nuclei Structure. Acta Geogr. Sin. 2002, 57, 85–95. (In Chinese) [Google Scholar]
- Camagni, R.; Salone, C. Network Urban Structures in Northern Italy: Elements for a Theoretical Framework. Urban Stud. 1993, 30, 1053–1064. [Google Scholar] [CrossRef]
- Batten, D.F. Network Cities: Creative Urban Agglomerations for the 21st Century. Urban Stud. 1995, 32, 313–327. [Google Scholar] [CrossRef]
- Wang, J.F.; Liu, X.H.; Peng, L.; Chen, H.Y.; Driskell, L.; Zheng, X.Y. Cities evolution tree and its application in land occupation prediction. Popul. Environ. 2012, 33, 186–201. [Google Scholar] [CrossRef]
- Fan, Y.; Yu, G.; He, Z. Origin, spatial pattern, and evolution of urban system: Testing a hypothesis of “urban tree”. Habitat Int. 2017, 59, 60–70. [Google Scholar] [CrossRef]
- Yu, G.; Li, M.; Xu, L.; Tu, Z.; Yu, Q.; Yang, D.; Xie, X.; Yang, Y. A theoretical framework of urban systems and their evolution: The GUSE theory and its simulation test. Sustain. Cities Soc. 2018, 41, 792–801. [Google Scholar] [CrossRef]
- Marull, J.; Font, C.; Boix, R. Modelling urban networks at mega-regional scale: Are increasingly complex urban systems sustainable? Land Use Policy 2015, 43, 15–27. [Google Scholar] [CrossRef]
- Arribas-Bel, D.; Nijkamp, P.; Scholten, H. Multidimensional urban sprawl in Europe: A self-organizing map approach. Comput. Environ. Urban Syst. 2011, 35, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Shen, T.Y.; Wang, W.D.; Hou, M.; Guo, Z.; Xue, L.; Yang, K. Study on Spatio-Temporal system dynamic models of urban growth. Syst. Eng.-Theory Pract. 2007, 27, 10–17. [Google Scholar] [CrossRef]
- Vaz, E.; Nijkamp, P. Gravitational forces in the spatial impacts of urban sprawl: An investigation of theregion of Veneto, Italy. Habitat Int. 2015, 45, 99–105. [Google Scholar] [CrossRef]
- Wang, Z.; Ye, X.; Lee, J.; Chang, X.; Liu, H.; Li, Q. A spatial econometric modeling of online social interactions using microblogs. Comput. Environ. Urban Syst. 2018, 70, 53–58. [Google Scholar] [CrossRef]
- Liu, J. Lectures on Whole Network Approach: A Practical Guide to UCINET; Truth and Wisdom Press, Shanghai People’s Publishing House: Shanghai, China, 2009. (In Chinese) [Google Scholar]
- Tang, F.H.; Tang, H.; Sun, Q. Analysis of the economic network structure of urban agglomerations in the middle Yangtze River. Acta Geogr. Sin. 2013, 68, 1357–1366. (In Chinese) [Google Scholar]
- Chen, Y.G.; Liu, M.H. The Basic Laws of the Shannon Entropy Values of Urban Land use Composition. Hum. Geogr. 2001, 16, 20–24. (In Chinese) [Google Scholar]
- Chen, Y.G.; Wang, J.J.; Feng, J. Understanding the fractal dimensions of urban forms through spatial entropy. Entropy 2017, 19, 600. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, M. A novel assessment of urbanization quality and its applications. Phys. A Stat. Mech. Appl. 2018, 508, 141–154. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, S.; Chen, X.; Liu, F.; Zou, Y. Taxi trips distribution modeling based on Entropy Maximizing theory: A case study in Harbin city China. Phys. A Stat. Mech. Appl. 2018, 493, 430–443. [Google Scholar] [CrossRef]
- Aburas, M.M.; Ho, Y.M.; Ramli, M.F.; Ash’aari, Z.H. Monitoring and assessment of urban growth patterns using spatio-temporal built-up area analysis. Environ. Monit. Assess. 2018, 190, 156. [Google Scholar] [CrossRef]
- Liu, D.; Cheng, C.; Fu, Q.; Zhang, Y.; Hu, Y.; Zhao, D.; Khan, M.I.; Faiz, M.A. Complexity measurement of precipitation series in urban areas based on particle swarm optimized multiscale entropy. Arab. J. Geosci. 2018, 11, 83. [Google Scholar] [CrossRef]
- Wang, M.X.; Zhao, H.H.; Cui, J.X.; Fan, D.; Lv, B.; Wang, G.; Li, Z.H.; Zhou, G.J. Evaluating green development level of nine cities within the Pearl River Delta, China. J. Clean. Prod. 2017, 174, 315–323. [Google Scholar] [CrossRef]
- Wilson, A.G. Entropy in urban and regional modelling: Retrospect and prospect. Geogr. Anal. 2010, 42, 364–394. [Google Scholar] [CrossRef]
- Li, S.; He, J.; Song, K. Network entropies of the Chinese financial market. Entropy 2016, 18, 331. [Google Scholar] [CrossRef]
- Congdon, P. A Bayesian approach to prediction using the gravity model, with an application to patient flow modeling. Geogr. Anal. 2000, 32, 205–224. [Google Scholar] [CrossRef]
- Chen, Y.G.; Liu, J.S. Derivation and generalization of the urban gravitational model using fractal idea with an application to the spatial cross-correlation between Beijing and Tianjin. Geogr. Res. 2002, 21, 742–752. (In Chinese) [Google Scholar]
- Li, M.; He, B.; Guo, R.; Li, Y.; Chen, Y.; Fan, Y. Study on Population Distribution Pattern atthe County Level of China. Sustainability 2018, 10, 3598. [Google Scholar] [CrossRef]
- Hong, J. Research on the Complexity of Network Organization Based on Entropy Theory. Chin. J. Manag. Sci. 2005, 13, 582–585. (In Chinese) [Google Scholar]
- Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC). Available online: http://www.resdc.cn (accessed on 23 January 2017).
- National Bureau of Statistics (China). Urban Statistical Yearbook of China; China Statistics Press: Beijing, China, 2006.
- National Bureau of Statistics (China). Urban Statistical Yearbook of China; China Statistics Press: Beijing, China, 2010.
- National Bureau of Statistics (China). Urban Statistical Yearbook of China; China Statistics Press: Beijing, China, 2014.
- Sexton, J.O.; Song, X.P.; Huang, C.; Channan, S.; Baker, M.E.; Townshend, J.R. Urban growth of the Washington D C-Baltimore, MD metropolitan region from 1984 to 2010 by annual, Landsat-based estimates of impervious cover. Remote Sens. Environ. 2013, 129, 42–53. [Google Scholar] [CrossRef]
- Pan, F.; Guo, J.; Zhang, H.; Liang, J. Building a “Headquarters Economy”: The geography of headquarters within Beijing and its implications for urban restructuring. Cities 2015, 42, 1–12. [Google Scholar] [CrossRef]
- Han, J.; Hayashi, Y.; Cao, X.; Imura, H. Application of an integrated system dynamics and cellular automata model for urban growth assessment: A case study of Shanghai. Landsc. Urban Plan. 2009, 91, 133–141. [Google Scholar] [CrossRef]
- Tan, R.; Liu, Y.; Liu, Y.; He, Q.; Ming, L.; Tang, S. Urban growth and its determinants across the Wuhan urban agglomeration, central China. Habitat Int. 2014, 44, 268–281. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, H.; Song, W.; Yu, B.; Xiu, C. Normalization of time series DMSP OLS nighttime light images for urban growth analysis with Pseudo Invariant Features. Landsc. Urban Plan. 2014, 128, 1–13. [Google Scholar] [CrossRef]
- Volo, T.J.; Vivoni, E.R.; Ruddell, B.L. An ecohydrological approach to conserving urban water through optimized landscape irrigation schedules. Landsc. Urban Plan. 2015, 133, 127–132. [Google Scholar] [CrossRef]
- Chen, Y.G. Normalizing and classifying shape indexes of cities by ideas from fractals. arXiv, 2016; arXiv:1608.08839. [Google Scholar]
- Gonzalez, P.B.; Aguilera-Benavente, F.; Gomez-Delgado, M. Partial validation of cellular automata based model simulations of urban growth: An approach to assessing factor influence using spatial methods. Environ. Model. Softw. 2015, 69, 77–89. [Google Scholar] [CrossRef]
- Rienow, A.; Goetzke, R. Supporting SLEUTH-Enhancing a cellular automaton with support vector machines for urban growth modeling. Comput. Environ. Urban Syst. 2015, 49, 66–81. [Google Scholar] [CrossRef]
- Berliant, M.; Wang, P. Urban growth and sub center formation: A trolley ride from the staples center to disneyland and the rose bowl. J. Urban Econ. 2008, 63, 679–693. [Google Scholar] [CrossRef]
- Ikeda, K.; Akamatsu, T.; Kono, T. Spatial period-doubling agglomeration of a core-periphery model with a system of cities. J. Econ. Dyn. Control 2012, 36, 754–778. [Google Scholar] [CrossRef]
- Hayek, U.W.; Efthymiou, D.; Farooq, B.; von Wirth, T.; Teich, M.; Neuenschwander, N.; Grêt-Regamey, A. Quality of urban patterns: Spatially explicit evidence for multiple scales. Landsc. Urban Plan. 2015, 142, 47–62. [Google Scholar] [CrossRef]
- Chen, Y.G. The rank-size scaling law and entropy-maximizing principle. Physica A 2012, 391, 767–778. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Jiang, B. Hierarchical Scaling in Systems of Natural Cities. Entropy 2018, 20, 432. [Google Scholar] [CrossRef]
- Kumar, P.; Ruddell, B.L. Information Driven Ecohydrologic Self-Organization. Entropy 2010, 12, 2085–2096. [Google Scholar] [CrossRef] [Green Version]
Year | Total Number of Connections | Total Micro-State | Maximum EE | EE | Order Degree |
---|---|---|---|---|---|
2006 | 45 | 86 | 6.43 | 5.34 | 0.17 |
2010 | 252 | 623 | 9.28 | 7.79 | 0.16 |
2014 | 528 | 1549 | 10.60 | 8.85 | 0.17 |
Year | Total Micro-State | Maximum Structure Entropy | Structural Entropy | Order Degree |
---|---|---|---|---|
2006 | 18 | 4.17 | 2.75 | 0.34 |
2010 | 65 | 6.02 | 4.01 | 0.33 |
2014 | 105 | 6.71 | 4.15 | 0.38 |
Year | H1 (EE) | H1m (EE) | R1 (EE) | H2 (QE) | H2m (QE) | R2 (QE) | H (SE) | R (SE) |
---|---|---|---|---|---|---|---|---|
2006 | 5.34 | 6.43 | 0.17 | 2.75 | 4.17 | 0.34 | 8.09 | 0.51 |
2010 | 7.79 | 9.93 | 0.16 | 4.01 | 6.02 | 0.33 | 11.80 | 0.50 |
2014 | 8.85 | 10.60 | 0.17 | 4.15 | 6.71 | 0.38 | 13.00 | 0.55 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Guo, R.; He, Z.; Li, M.; He, B.; Yang, H.; Wen, N. Spatio–Temporal Pattern of the Urban System Network in the Huaihe River Basin Based on Entropy Theory. Entropy 2019, 21, 20. https://doi.org/10.3390/e21010020
Fan Y, Guo R, He Z, Li M, He B, Yang H, Wen N. Spatio–Temporal Pattern of the Urban System Network in the Huaihe River Basin Based on Entropy Theory. Entropy. 2019; 21(1):20. https://doi.org/10.3390/e21010020
Chicago/Turabian StyleFan, Yong, Renzhong Guo, Zongyi He, Minmin Li, Biao He, Hao Yang, and Nu Wen. 2019. "Spatio–Temporal Pattern of the Urban System Network in the Huaihe River Basin Based on Entropy Theory" Entropy 21, no. 1: 20. https://doi.org/10.3390/e21010020
APA StyleFan, Y., Guo, R., He, Z., Li, M., He, B., Yang, H., & Wen, N. (2019). Spatio–Temporal Pattern of the Urban System Network in the Huaihe River Basin Based on Entropy Theory. Entropy, 21(1), 20. https://doi.org/10.3390/e21010020