Performance Evaluation of an Entropy-Based Structural Health Monitoring System Utilizing Composite Multiscale Cross-Sample Entropy
Abstract
:1. Introduction
2. Methodology
2.1. Cross-SampEn Method
2.2. MSE Method
2.3. CMSE Method
2.4. DI Measure
3. Feasibility Assessment
3.1. Comparison of MSCE and CMSCE
3.2. Numerical Simulation
3.3. Numerical Simulation Results
3.3.1. Damage Detection from the Original Velocity Response
3.3.2. Damage Detection from the Extracted First Mode Time Series (IMF4)
3.3.3. Discussion on Numerical Simulation
3.3.4. Noise Statistical Analysis
4. Experimental Verification
4.1. Experimental Setup
4.2. Damage Detection Result
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wahab, M.A.; De Roeck, G. Damage detection in bridges using modal curvatures: Application to a real damage scenario. J. Sound Vib. 1999, 226, 217–235. [Google Scholar] [CrossRef]
- Maeck, J.; Wahab, M.A.; Peeters, B.; De Roeck, G.; De Visscher, J.; De Wilde, W.; Ndambi, J.M.; Vantomme, J. Damage identification in reinforced concrete structures by dynamic stiffness determination. Eng. Struct. 2000, 22, 1339–1349. [Google Scholar] [CrossRef]
- Chang, P.C.; Flatau, A.; Liu, S. Health monitoring of civil infrastructure. Struct. Health Monit. 2003, 2, 257–267. [Google Scholar] [CrossRef]
- Deraemaeker, A.; Reynders, E.; De Roeck, G.; Kullaa, J. Vibration-based structural health monitoring using output-only measurements under changing environment. Mech. Syst. Signal Process. 2008, 22, 34–56. [Google Scholar] [CrossRef] [Green Version]
- Amezquita-Sanchez, J.P.; Adeli, H. Signal processing techniques for vibration-based health monitoring of smart structures. Arch. Comput. Methods Eng. 2016, 23, 1–15. [Google Scholar] [CrossRef]
- Opoka, S.; Soman, R.; Mieloszyk, M.; Ostachowicz, W. Damage detection and localization method based on a frequency spectrum change in a scaled tripod model with strain rosettes. Mar. Struct. 2016, 49, 163–179. [Google Scholar] [CrossRef]
- Soman, R.; Mieloszyk, M.; Ostachowicz, W. A two-step damage assessment method based on frequency spectrum change in a scaled wind turbine tripod with strain rosettes. Mar. Struct. 2018, 61, 419–433. [Google Scholar] [CrossRef]
- Kourehli, S.S.; Bagheri, A.; Amiri, G.G.; Ghafory-Ashtiany, M. Structural damage detection using incomplete modal data and incomplete static response. KSCE J. Civ. Eng. 2013, 17, 216–223. [Google Scholar] [CrossRef]
- Siringoringo, D.M.; Fujino, Y. System identification of suspension bridge from ambient vibration response. Eng. Struct. 2008, 30, 462–477. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication, Part I, Part II. Bell Syst. Tech. J. 1948, 27, 623–656. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. New metric invariant of transitive dynamical systems and endomorphisms of Lebesgue spaces. Dokl. Russ. Acad. Sci. 1958, 119, 861–864. [Google Scholar]
- Sinai, Y.G. On the notion of entropy of a dynamical system. Dokl. Akad. Nauk. SSSR 1959, 124, 768–771. [Google Scholar]
- Pincus, S.M.; Gladstone, I.M.; Ehrenkranz, R.A. A regularity statistic for medical data analysis. J. Clin. Monit. Comput. 1991, 7, 335–345. [Google Scholar] [CrossRef]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [PubMed]
- An, Y.-H.; Ou, J.-P. Structural damage localisation for a frame structure from changes in curvature of approximate entropy feature vectors. Nondestruct. Test. Eval. 2014, 29, 80–97. [Google Scholar] [CrossRef]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol.-Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [PubMed]
- Lake, D.; Richman, J.S.; Griffin, M.P.; Moorman, J.R. Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 2002, 89, 068102. [Google Scholar] [CrossRef]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of biological signals. Phys. Rev. E 2005, 71, 021906. [Google Scholar] [CrossRef]
- Zhang, L.; Xiong, G.; Liu, H.; Zou, H.; Guo, W. Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference. Expert Syst. Appl. 2010, 37, 6077–6085. [Google Scholar] [CrossRef]
- Xia, J.A.; Shang, P.J. Multiscale entropy analysis of financial time series. Fluct. Noise Lett. 2012, 11, 1250033. [Google Scholar] [CrossRef]
- Pincus, S.; Singer, B.H. Randomness and degrees of irregularity. Proc. Natl. Acad. Sci. USA 1996, 93, 2083–2088. [Google Scholar] [CrossRef] [PubMed]
- Fabris, C.; De Colle, W.; Sparacino, G. Voice disorders assessed by (cross-) sample entropy of electroglottogram and microphone signals. Biomed. Signal Process. Control 2013, 8, 920–926. [Google Scholar] [CrossRef]
- Wu, S.D.; Wu, C.W.; Lin, S.G.; Wang, C.C.; Lee, K.Y. Time series analysis using composite multiscale entropy. Entropy 2013, 15, 1069–1084. [Google Scholar] [CrossRef]
- Yin, Y.; Shang, P.G.; Feng, G.C. Modified multiscale cross-entropy for complex time series. Appl. Math. Comput. 2016, 289, 98–110. [Google Scholar] [CrossRef]
- Wu, Z.H.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Lin, Y.H.; Huang, H.C.; Chang, Y.C.; Lin, C.; Lo, M.T.; Liu, L.Y.; Tasi, P.R.; Chen, Y.S.; Ko, W.J.; Ho, Y.L.; et al. Multi-scale symbolic entropy analysis provides prognostic prediction in patients receiving extracorporeal life support. Crit. Care 2014, 18, 548. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.H.; Lin, C.; Ho, Y.H.; Wu, V.C.; Lo, M.T.; Hung, K.T.; Liu, L.Y.; Lin, L.Y.; Huang, J.W.; Peng, C.K. Heart rhythm complexity impairment in patients undergoing peritoneal dialysis. Sci. Rep. 2016, 6, 280202. [Google Scholar] [CrossRef]
- Chiu, H.C.; Ma, H.P.; Lin, C.; Lo, M.T.; Lin, L.Y.; Wu, C.K.; Chiang, J.Y.; Lee, J.K.; Hung, C.S.; Wang, T.D.; et al. Serial heart rhythm complexity changes in patients with anterior wall ST segment elevation myocardial infarction. Sci. Rep. 2017, 7, 43507. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.K.; Lainez, A.G. Entropy-based structural health monitoring system for damage detection in multi-bay three-dimensional structures. Entropy 2018, 20, 49. [Google Scholar]
- Huang, C.S. Structural identification from ambient vibration measurement using the multivariate AR model. J. Sound Vib. 2001, 241, 337–359. [Google Scholar] [CrossRef]
- Gow, B.J.; Peng, C.K.; Wayne, P.M.; Ahn, A.C. Multiscale entropy analysis of center-of-pressure dynamics in human postural control: Methodological considerations. Entropy 2015, 17, 7926–7947. [Google Scholar] [CrossRef]
Case Number | Damage Case | Frequency (Hz) | |
---|---|---|---|
SAP2000 | IMF4 | ||
1 | Undamaged | 3.16 | 3.12 |
2 | 1F | 2.56 | 2.49 |
3 | 2F | 2.55 | 2.49 |
4 | 3F | 2.63 | 2.68 |
5 | 4F | 2.73 | 2.73 |
6 | 5F | 2.85 | 2.88 |
7 | 6F | 2.99 | 2.98 |
8 | 7F | 3.12 | 3.12 |
9 | 1&2F | 2.15 | 2.15 |
10 | 3&4F | 2.32 | 2.34 |
11 | 5&6F | 2.69 | 2.69 |
12 | 1&2&3F | 1.93 | 1.95 |
13 | 4&5&6F | 2.38 | 2.34 |
14 | 1&2&3&4F | 1.81 | 1.81 |
15 | 4&5&6&7F | 2.35 | 2.34 |
Two-Class Statistical Classification: Confusion Matrix | |||||||||
---|---|---|---|---|---|---|---|---|---|
Case Number | Damage Floors | CMSCE | EEMD + CMSCE | ||||||
TP | FP | TN | FN | TP | FP | TN | FN | ||
1 | None | ||||||||
2 | 1F | 0 | 0 | 6 | 1 | 1 | 0 | 6 | 0 |
3 | 2F | 1 | 0 | 6 | 0 | 1 | 0 | 6 | 0 |
4 | 3F | 1 | 0 | 6 | 0 | 1 | 0 | 6 | 0 |
5 | 4F | 1 | 0 | 6 | 0 | 1 | 0 | 6 | 0 |
6 | 5F | 1 | 0 | 6 | 0 | 0 | 0 | 6 | 1 |
7 | 6F | 1 | 0 | 6 | 0 | 0 | 0 | 6 | 1 |
8 | 7F | 1 | 1 | 5 | 0 | 1 | 0 | 6 | 0 |
9 | 1&2F | 1 | 0 | 5 | 1 | 1 | 0 | 5 | 1 |
10 | 3&4F | 2 | 0 | 5 | 0 | 0 | 1 | 4 | 2 |
11 | 5&6F | 2 | 0 | 5 | 0 | 0 | 0 | 5 | 2 |
12 | 1&2&3F | 2 | 1 | 3 | 1 | 1 | 0 | 4 | 2 |
13 | 4&5&6F | 3 | 0 | 4 | 0 | 0 | 2 | 2 | 3 |
14 | 1&2&3&4F | 3 | 0 | 3 | 1 | 3 | 0 | 3 | 1 |
15 | 4&5&6&7F | 4 | 0 | 3 | 0 | 0 | 2 | 1 | 4 |
Total | 23 | 2 | 69 | 4 | 10 | 5 | 66 | 17 | |
Accuracy | 93.9% | 77.6% | |||||||
Precision | 92% | 66.7% | |||||||
Recall | 85.2% | 37% |
Damage Location | SNR = 60 | SNR = 40 | SNR = 20 | |||
---|---|---|---|---|---|---|
CMSCE | Damage Index | CMSCE | Damage Index | CMSCE | Damage Index | |
1F | C | F | C | F | C | F |
2F | C | C | C | C | C | C |
3F | C | C | C | C | C | C |
4F | C | C | C | C | C | C |
5F | C | C | C | C | C | C |
6F | F | C | F | C | F | C |
7F | F | C | F | C | F | F |
1&2F | C | C | C | C | C | C |
3&4F | C | C | C | C | C | C |
5&6F | F | C | F | C | F | C |
1&2&3F | C | C | C | C | C | C |
4&5&6F | C | F | C | F | C | F |
1&2&3&4F | C | C | C | C | C | C |
4&5&6&7F | C | C | C | C | C | C |
Accuracy (%) | 78.57% | 85.71% | 78.57% | 85.71% | 78.57% | 78.57% |
Case Number | Damage Group | Damage Floors | Frequency (Hz) |
---|---|---|---|
1 | Undamaged | None | 3.34 |
2 | One-story damage | 1F | 2.08 |
3 | 2F | 2.13 | |
4 | 3F | 2.12 | |
5 | 4F | 2.29 | |
6 | 5F | 2.61 | |
7 | 6F | 2.88 | |
8 | 7F | 3.2 | |
9 | Two-story damage | 1&2F | 1.64 |
10 | 3&4F | 1.83 | |
11 | 5&6F | 2.32 | |
12 | Three-story damage | 1&2&3F | 1.44 |
13 | 4&5&6F | 1.88 | |
14 | Multistory damage | 1&2&3&4F | 1.33 |
15 | 4&5&6&7F | 1.86 |
Two-Class Statistical Classification: Confusion Matrix | |||||
---|---|---|---|---|---|
Case Number | Damage Floors | CMSCE | |||
TP | FP | TN | FN | ||
1 | None | ||||
2 | 1F | 1 | 0 | 6 | 0 |
3 | 2F | 1 | 3 | 3 | 0 |
4 | 3F | 1 | 4 | 2 | 0 |
5 | 4F | 1 | 3 | 3 | 0 |
6 | 5F | 1 | 0 | 6 | 0 |
7 | 6F | 1 | 0 | 6 | 0 |
8 | 7F | 0 | 1 | 5 | 1 |
9 | 1&2F | 2 | 2 | 3 | 0 |
10 | 3&4F | 2 | 1 | 4 | 0 |
11 | 5&6F | 2 | 1 | 4 | 0 |
12 | 1&2&3F | 2 | 0 | 4 | 1 |
13 | 4&5&6F | 3 | 1 | 3 | 0 |
14 | 1&2&3&4F | 4 | 3 | 0 | 0 |
15 | 4&5&6&7F | 4 | 0 | 3 | 0 |
Total | 25 | 19 | 52 | 2 | |
Accuracy | 78.6% | ||||
Precision | 56.8% | ||||
Recall | 92.6% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, T.-K.; Chien, Y.-H. Performance Evaluation of an Entropy-Based Structural Health Monitoring System Utilizing Composite Multiscale Cross-Sample Entropy. Entropy 2019, 21, 41. https://doi.org/10.3390/e21010041
Lin T-K, Chien Y-H. Performance Evaluation of an Entropy-Based Structural Health Monitoring System Utilizing Composite Multiscale Cross-Sample Entropy. Entropy. 2019; 21(1):41. https://doi.org/10.3390/e21010041
Chicago/Turabian StyleLin, Tzu-Kang, and Yi-Hsiu Chien. 2019. "Performance Evaluation of an Entropy-Based Structural Health Monitoring System Utilizing Composite Multiscale Cross-Sample Entropy" Entropy 21, no. 1: 41. https://doi.org/10.3390/e21010041
APA StyleLin, T. -K., & Chien, Y. -H. (2019). Performance Evaluation of an Entropy-Based Structural Health Monitoring System Utilizing Composite Multiscale Cross-Sample Entropy. Entropy, 21(1), 41. https://doi.org/10.3390/e21010041