Desalination Processes’ Efficiency and Future Roadmap
Abstract
:1. Introduction
2. Thermodynamic Framework for Standard Primary Energy (SPE)
Conversion Factors for Derived Energies
3. Standard Universal Performance Ratio (SUPR)
4. Roadmap for Sustainable Water Supplies
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
GCC | Gulf Cooperation Countries |
MED | multi effect desalination |
MSF | multi stage flash |
SRRO | seawater reverse osmosis |
TWh | terawatt hours |
GWh | gigawatt hours |
MWh | megawatt hour |
KWh | kilowatt hours |
BCM | billion cubic meter |
CCGT | combined cycle gas turbine |
GT | gas turbine |
HRSG | heat recovery steam generator |
ST | steam turbine |
SPE | standard primary energy |
SUPR | standard universal performance ratio |
TVC | thermo vapor compressor |
HP | high pressure |
MP | medium pressure |
LP | low pressure |
CF | conversion factors |
TL | thermodynamic limit |
W | work |
UL | unaccounted losses |
Subscripts | |
Th | thermal |
TH | adiabatic flam temperature |
To | ambient temperature |
TL1 to TL5 | process temperatures |
Elec | electric |
Ther | thermal |
a | arbitrary |
Rev | reversible |
Sep | separator |
References
- Tonner, J. Desalination Trends; A Report; Water Consultants International: Mequon, WI, USA; World Bank Group: Washington, DC, USA, 2003. [Google Scholar]
- IDA Newsletter. Available online: http://ida.enoah.com/portals/41/newsletter/issues/2015-11-12/article_4.html (accessed on 1 November 2018).
- Saif, O. The Future Outlook of Desalination in the Gulf: Challenges & Opportunities Faced by Qatar & the UAE. M.S. Thesis, McMaster University, Hamilton, ON, Canada, 2012. [Google Scholar]
- Shahzad, M.W.; Burhan, M.; Ang, L.; Ng, K.C. Energy-water-environment nexus underpinning future desalination sustainability. Desalination 2017, 413, 52–64. [Google Scholar] [CrossRef]
- Saif, O.; Mezher, T.; Arafat, H.A. Water security in the GCC countries: Challenges and opportunities. J. Environ. Stud. Sci. 2014, 4, 329–346. [Google Scholar] [CrossRef]
- Trieb, F.; Muller-Steinhagen, H.; Müller-Steinhagen, H. Concentrating solar power for seawater desalination in the Middle East and North Africa. Desalination 2008, 220, 165–183. [Google Scholar] [CrossRef]
- Zaib, Q.; Fath, H. Application of carbon nano-materials in desalination processes. Desalin. Water Treat. 2012, 51, 627–636. [Google Scholar] [CrossRef]
- Mezher, T.; Fath, H.; Abbas, Z.; Khaled, A. Techno-economic assessment and environmental impacts of desalination technologies. Desalination 2011, 266, 263–273. [Google Scholar] [CrossRef]
- Li, C.; Goswami, D.Y.; Shapiro, A.; Stefanakos, E.K.; Demirkaya, G. A new combined power and desalination system driven by low grade heat for concentrated brine. Energy 2012, 46, 582–595. [Google Scholar] [CrossRef]
- Li, C.; Goswami, Y.; Stefanakos, E. Solar assisted sea water desalination: A review. Renew. Sustain. Energy Rev. 2013, 19, 136–163. [Google Scholar] [CrossRef]
- Ghaffour, N.; Missimer, T.M.; Amy, G. Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability. Desalination 2013, 309, 197–207. [Google Scholar] [CrossRef] [Green Version]
- AlMarzooqi, F.A.; Al Ghaferi, A.A.; Saadat, I.; Hilal, N. Application of Capacitive Deionisation in water desalination: A review. Desalination 2014, 342, 3–15. [Google Scholar] [CrossRef]
- Darwisha, M.A.; Abdulrahim, H.K.; Hassan, A.S.; Sharif, A.O. Retrofitting the combined-cycle producing electric power and desalted seawater to include district cooling in GCC. Desalin. Water Treat. 2015, 57, 5331–5344. [Google Scholar] [CrossRef]
- Elimelech, M.; Phillip, W.A. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef]
- Buggea, J.; Kjæra, S.; Blumb, R. High-efficiency coal-fired power plants development. Energy 2006, 31, 1437–1445. [Google Scholar] [CrossRef]
- Fu, C.; Anantharaman, R.; Jordal, K.; Gundersen, T. Thermal efficiency of coal-fired power plants: From theoretical to practical assessments. Energy Convers. Manag. 2015, 105, 530–544. [Google Scholar] [CrossRef] [Green Version]
- Power Generation from Coal Measuring and Reporting Efficiency Performance and CO2 Emissions; The International Energy Agency (IEA) Report 2010; IEA: Paris, France, 2010.
- CO2 Emissions from Fuel Combustion; The International Energy Agency (IEA) Report 2017; IEA: Paris, France, 2017.
- Hammond, G.P.; Howard, H.R.; Jones, C.I. The energy and environmental implications of UK more electric transition pathways: A whole systems perspective. Energy Policy 2013, 52, 103–116. [Google Scholar] [CrossRef]
- Hammond, G.P.; O’Grady, Á. The implications of upstream emissions from the power sector. Energy 2014, 167, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Drought, El Niño, Blackouts and Venezuela, CO2 Emissions Variations in CCGTs (2016). Available online: http://euanmearns.com/co2-emissions-variations-in-ccgts-used-to-balance-wind-in-ireland/ (accessed on 10 January 2019).
- Kotowicz, J.; Brzęczek, M. Analysis of increasing efficiency of modern combined cycle power plant: A case study. Energy 2018, 153-15, 90–99. [Google Scholar] [CrossRef]
- Chase, D.L. Combined-Cycle Development Evolution and Future; GER-4206, (10/00); GE Power Systems: Schenectady, NY, USA; Available online: https://www.ge.com/content/dam/gepower-pgdp/global/en_US/documents/technical/ger/ger-4206-combined-cycle-development-evolution-future.pdf (accessed on 10 January 2019).
- Alyah, M.; Ashman, J.; Arisoy, A.; Gusev, A. Combined Cycle Power Plants. In Proceedings of the IMIA Annual Conference 2015, Merida, Mexico, 26–30 September 2015. IMIA Working Group Paper 91 (15). [Google Scholar]
- Darwish, M.A.; Abdulrahim, H.K.; Mabrouk, A.A.; Hassan, A.S. Cogeneration Power-Desalting Plants Using Gas Turbine Combined Cycle. In Desalination Update; IntechOpen: London, UK, 2015; Chapter 6. [Google Scholar] [CrossRef] [Green Version]
- Almutairi, A.; Pilidis, P.; Al-Mutawa, N. Energetic and Exergetic Analysis of Combined Cycle Power Plant: Part-1 Operation and Performance. Energies 2015, 8, 14118–14135. [Google Scholar] [CrossRef] [Green Version]
- Almutairi, A.; Pilidis, P.; Al-Mutawa, N.; Al-Weshahi, M. Energetic and exergetic analysis of cogeneration power combined cycle and ME-TVC-MED water desalination plant: Part-1 operation and performance. Appl. Therm. Eng. 2016, 103, 77–91. [Google Scholar] [CrossRef]
- Hamed, O.A. Thermoeconomic analysis of combined power cycle integrated with MSF/SWRO desalination plant. Desalin. Water Treat. 2016, 57, 26552–26561. [Google Scholar] [CrossRef]
- Wade, N.M. Energy and cost allocation in dual-purpose power and desalination plants. Desalination 1999, 123, 115–125. [Google Scholar] [CrossRef]
- Kamal, I. Thermo-economic modeling of dual-purpose power/desalination plants: Steam cycles. Desalination 1997, 114, 233–240. [Google Scholar] [CrossRef]
- Saeed, M.N. Fuel efficiencies, Allocation of fuel and fuel cost for power and desalination in dual purpose plants: A novel methodology. Desalination 1992, 85, 213–229. [Google Scholar] [CrossRef]
- Hamed, O.A.; Al-Washmi, H.A.; Al-Otaibi, H.A. Thermo economic analysis of a power/water cogeneration plant. Energy 2006, 31, 2699–2709. [Google Scholar] [CrossRef]
- Al-Sofi, M.A.K.; Srouji, M.M. Fuel allocation in dual-purpose plants. Desalination 1995, 100, 65–70. [Google Scholar] [CrossRef]
- Mussati, S.; Aguire, P.; Scenna, N. Dual-purpose desalination plants. Part II. Optimal configuration. Desalination 2002, 153, 185–189. [Google Scholar]
- Derwaish, M.A. Fuel cost charged to desalters in co-generation power-desalting plants. Heat Recovery Syst. CHP 1995, 15, 357–368. [Google Scholar] [CrossRef]
- Wang, Y.; Lior, N. Fuel allocation in a combined steam-injected gas turbine and thermal seawater desalination system. Desalination 2007, 214, 306–326. [Google Scholar] [CrossRef]
- Helal, A.M. Hybridization-a new trend in desalination. Desalin. Water Treat. 2009, 3, 129–135. [Google Scholar] [CrossRef]
- Lozano, M.A.; Carvalho, M.; Serra, L.M. Allocation of economic costs in trigeneration systems at variable load conditions. Energy Build. 2011, 43, 2869–2881. [Google Scholar] [CrossRef]
- Spiegler, K.S.; El-Sayed, Y.M. The energetics of desalination processes. Desalination 2001, 134, 109–128. [Google Scholar] [CrossRef]
- Mistry, K.H.; Lienhard, V.J.H.; Zubair, S.M. Effect of entropy generation on the performance of humidification-dehumidification desalination cycles. Int. J. Therm. Sci. 2010, 49, 1837–1847. [Google Scholar] [CrossRef] [Green Version]
- Alasfour, F.; Darwish, M.; Amer, A.B. Thermal analysis of ME–TVC+MEE desalination systems. Desalination 2005, 174, 39–61. [Google Scholar] [CrossRef]
- Kahraman, N.; Cengel, Y.A. Exergy analysis of a MSF distillation plant. Energy Convers. Manag. 2005, 46, 2625–2636. [Google Scholar] [CrossRef]
- Veza, J.M. Mechanical vapour compression desalination plants—A case study. Desalination 1995, 101, 1–10. [Google Scholar] [CrossRef]
- Cerci, Y. Exergy analysis of a reverse osmosis desalination plant in California. Desalination 2002, 142, 257–266. [Google Scholar] [CrossRef]
- Sharqawy, M.H.; Zubair, S.M.; Lienhard, V.J.H. Second Law analysis of reverse osmosis desalination plants: An alternative design using pressure retarded osmosis. Energy 2011, 36, 6617–6626. [Google Scholar] [CrossRef]
- Hosseini, S.R.; Amidpour, M.; Behbahaninia, A. Thermoeconomic analysis with reliability consideration of a combined power and multi stage flash desalination plant. Desalination 2011, 278, 424–433. [Google Scholar] [CrossRef]
- Mistry, K.H.; McGovern, R.K.; Thiel, G.P.; Summers, E.K.; Zubair, S.M.; Lienhard, J.H. Entropy generation analysis of desalination technologies. Entropy 2011, 13, 1829–1864. [Google Scholar] [CrossRef]
- Mistry, K.H.; Lienhard, J.H. Generalized least energy of separation for desalination and other chemical separation processes. Entropy 2013, 15, 2046–2080. [Google Scholar] [CrossRef]
- Mistry, K.H.; Antar, M.A.; Lienhard V, J.H. An improved model for multiple effect distillation. Desalin. Water Treat. 2013, 51, 807–820. [Google Scholar] [CrossRef]
- Lienhard, J.H.; Mistry, K.H.; Sharqawy, M.H.; Thiel, G.P. Thermodynamics, exergy, and energy efficiency in desalination systems. In Desalination Sustainability: A Technical, Socioeconomic, and Environmental Approach; Elsevier Publishing Co.: Amsterdam, The Netherlands, 2017; Chapter 4; pp. 1–85. ISBN 978-0-12-809791-5. [Google Scholar]
- Fitzsimons, L.; Corcoran, B.; Young, P.; Foley, G. Exergy analysis of water purification and desalination: A study of exergy model approaches. Desalination 2015, 359, 212–224. [Google Scholar] [CrossRef]
- Shahzad, M.W.; Burhan, M.; Son, H.S.; Oh, S.J.; Ng, K.C. Desalination Processes Evaluation at Common Platform: A Universal Performance Ratio (UPR) Method. Appl.Therm. Eng. 2018, 134, 62–67. [Google Scholar] [CrossRef]
- Ng, K.C.; Shahzad, M.W.; Son, H.S.; Hamed, O.A. An Exergy Approach to Efficiency Evaluation of Desalination. Appl. Phys. Lett. 2017, 110, 184101. [Google Scholar] [CrossRef]
- Semiat, R. Energy Issues in Desalination Processes. Environ. Sci. Technol. 2008, 42, 8193–8201. [Google Scholar] [CrossRef] [PubMed]
- Stillwell, A.S.; Webber, M.E. Predicting the Specific Energy Consumption of Reverse Osmosis Desalination. Water 2016, 8, 601. [Google Scholar] [CrossRef]
- Shahzad, M.W.; Burhan, M.; Ghaffour, N.; Ng, K.C. A multi evaporator desalination system operated with thermocline energy for future sustainability. Desalination 2018, 435, 268–277. [Google Scholar] [CrossRef]
- Ng, K.C.; Shahzad, M.W. Sustainable desalination using ocean thermocline energy. Renew. Sustain. Energy Rev. 2018, 82, 240–246. [Google Scholar] [CrossRef]
- Shahzad, M.W.; Burhan, M.; Ng, K.C. Pushing Desalination Recovery to the Maximum Limit: Membrane and Thermal Processes Integration. Desalination 2017, 416, 54–64. [Google Scholar] [CrossRef]
- Shahzad, M.W.; Ng, K.C. An Improved Multi-Evaporator Adsorption Desalination Cycle for GCC Countries. Energy Technol. 2017. [Google Scholar] [CrossRef]
- Shahzad, M.W.; Ng, K.C. On the Road to Water Sustainability in the Gulf. Nat. Middle East 2016. [Google Scholar] [CrossRef]
- Shahzad, M.W.; Ng, K.C.; Thu, K. Future sustainable desalination using waste heat: Kudos to thermodynamic synergy. Environ. Sci. Water Res. Technol. 2016, 2, 206–212. [Google Scholar] [CrossRef]
- Thu, K.; Kim, Yo.; Shahzad, M.W.; Saththasivam, J.; Ng, K.C. Performance investigation of an advanced multi-effect adsorption desalination (MEAD) cycle. Appl. Energy 2015, 159, 469–477. [Google Scholar] [CrossRef]
- Shahzad, M.W.; Thu, K.; Kim, Y.-D.; Ng, K.C. An Experimental Investigation on MEDAD Hybrid Desalination Cycle. Appl. Energy 2015, 148, 273–281. [Google Scholar] [CrossRef]
- Ng, K.C.; Thu, K.; Oh, S.J.; Ang, L.; Shahzad, M.W.; Ismail, A.B. Recent developments in thermally-driven seawater desalination: Energy efficiency improvement by hybridization of the MED and AD cycles. Desalination 2015, 356, 255–270. [Google Scholar] [CrossRef]
- Shahzad, M.W.; Ng, K.C.; Thu, K.; Saha, B.B.; Chun, W.G. Multi Effect Desalination and Adsorption Desalination (MEDAD): A Hybrid Desalination Method. Appl. Therm. Eng. 2014, 72, 289–297. [Google Scholar] [CrossRef]
- Shahzad, M.W. The Hybrid Multi-Effect Desalination (MED) and the Adsorption (AD) Cycle for Desalination. Ph.D. Thesis, National University of Singapore, Singapore, 2013. [Google Scholar]
- Shahzad, M.W.; Burhan, M.; Ng, K.C. The Fallacy of Energy efficiency for comparing Desalination Plants: A Standard Primary Energy Approach. Nat. Clean Water 2019, 2, 1–7. [Google Scholar] [CrossRef]
- Taheri, R.; Razmjou, A.; Szekely, G.; Hou, J.; Ghezelbash, G.R. Biodesalination—On harnessing the potential of nature’s desalination processes. Bioinspir. Biomim. 2016, 11, 041001. [Google Scholar] [CrossRef] [PubMed]
- Goh, P.S.; Ismail, A.F.; Matsuura, T. Perspective and Roadmap of Energy-Efficient Desalination Integrated with Nanomaterials. Sep. Purif. Rev. 2017, 47, 124–141. [Google Scholar] [CrossRef]
Brayton Cycle (GT) | |
Carnot work | |
Second law efficiency | |
Exergy utilization factor for GT cycle | |
Standard primary energy conversion | |
Rankine Cycle (STs) | |
Carnot work | |
Second law efficiency | |
Exergy utilization factor for ST cycle | |
Standard primary energy conversion | |
Desalination Cycle | |
Carnot work for separation | For the same equivalent work, the standard primary energy is given by: |
Second law efficiency of separation | |
Actual separation work | |
SPE proportions for separation processes | |
UL: unaccounted losses that includes; (a) exergy of exhaust gas leaving from HRSG, (b) GT losses, (c) STs losses and (d) exergy of steam condensed in the condenser |
Carnot Work (MW) | Exergy Destruction (%) | Cumulative Exergy Destruction (%) | |
---|---|---|---|
Gas turbine cycle | |||
Gas turbine | 563.0 | 58.32 | 58.32 |
Exhaust gas to ambient | 18.5 | ||
Un-accounted losses share | 21.0 | ||
Sub-total | 602.5 | ||
2nd law efficiency | 64.5% | ||
Steam turbine cycle | |||
Steam turbines | 298.5 | 38.93 | 97.25 |
Re-heating | 22.0 | ||
HRSG losses share | 51.5 | ||
Condenser losses share | 19.7 | ||
Un-accounted losses share | 10.5 | ||
Sub-total | 402.2 | ||
2nd law efficiency | 50.1% | ||
Multi effect desalination cycle | |||
Multi-effect desalination (MED) heat source | 18.0 | 2.75 | 100 |
Thermal vapor compressor (TVC) | 5.29 | ||
HRSG losses share | 3.44 | ||
Condenser losses share | 1.39 | ||
Un-accounted losses share | 0.18 | ||
Sub-total | 28.3 | ||
Conversion factors (CF) from derived energy to SPE | |||
For combined cycle gas turbine (CCGT) electricity (weighted factor) | 2.0 (equivalent to 50% CCGT efficiency) | ||
For MED | 36.36 |
Specific Energy Consumption and Performance Ratio | Reverse Osmosis (SWRO) | Multi-Stage Flashing (MSF) | Multi-Effect Distillation (MED) |
---|---|---|---|
Electricity (kWh_elec m−3) [54,55] | 3.5 | 2.8 | 1.8 |
Thermal (kWh_ther/m−3) [54,55] | - | 95.0 | 68.0 |
Equivalent Standard Primary Energy (SPE) and standard universal performance ratio (SUPR) | |||
Conversion factor for electricity (weighted CFelec) | 2.0 | ||
Conversion factor for thermal for less than 130 °C operation (CFther) | - | 36.36 | |
Standard primary energy (Q_SPE) | 7.01 | 7.77 | 5.47 |
Standard universal performance ratio (SUPR) | 92.30 | 83.15 | 118.12 |
SUPR % of thermodynamic limit | 11.1% | 10.0% | 14.2% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahzad, M.W.; Burhan, M.; Ybyraiymkul, D.; Ng, K.C. Desalination Processes’ Efficiency and Future Roadmap. Entropy 2019, 21, 84. https://doi.org/10.3390/e21010084
Shahzad MW, Burhan M, Ybyraiymkul D, Ng KC. Desalination Processes’ Efficiency and Future Roadmap. Entropy. 2019; 21(1):84. https://doi.org/10.3390/e21010084
Chicago/Turabian StyleShahzad, Muhammad Wakil, Muhammad Burhan, Doskhan Ybyraiymkul, and Kim Choon Ng. 2019. "Desalination Processes’ Efficiency and Future Roadmap" Entropy 21, no. 1: 84. https://doi.org/10.3390/e21010084
APA StyleShahzad, M. W., Burhan, M., Ybyraiymkul, D., & Ng, K. C. (2019). Desalination Processes’ Efficiency and Future Roadmap. Entropy, 21(1), 84. https://doi.org/10.3390/e21010084