Bayesian Analysis of Femtosecond Pump-Probe Photoelectron-Photoion Coincidence Spectra with Fluctuating Laser Intensities
Abstract
:1. Introduction
2. Experiment
3. Bayesian Data Analysis
3.1. Preliminary Considerations
3.2. The Posterior PDF
3.3. The Prior PDF
3.4. The Likelihood
3.5. Remarks on the Posterior Sampling
4. Mock Data Analysis
4.1. False Coincidences
4.2. Background Subtraction
5. Application to Experimental Data
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A. Solution of the 〈λn 〉-Integral
Appendix B. Channel-Resolved Single Coincidences
Appendix C. Transformation of the Dirac Distribution
Appendix D. The Jacobian Determinant
Appendix E. Probabilities of the Count-Pairs (Ne, Ni)
References
- Brehm, B.; von Puttkamer, E. Koinzidenzmessung von Photoionen und Photoelektronen bei Methan. Z. Naturforsch. A 1967, 22, 8–10. [Google Scholar] [CrossRef]
- Boguslavskiy, A.E.; Mikosch, J.; Gijsbertsen, A.; Spanner, M.; Patchkovskii, S.; Gador, N.; Vrakking, M.J.J.; Stolow, A. The multielectron ionization dynamics underlying attosecond strong-field spectroscopies. Science 2012, 335, 1336–1340. [Google Scholar] [CrossRef] [PubMed]
- Sándor, P.; Zhao, A.; Rozgonyi, T.; Weinacht, T. Strong field molecular ionization to multiple ionic states: Direct versus indirect pathways. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 124021. [Google Scholar] [CrossRef]
- Koch, M.; Heim, P.; Thaler, B.; Kitzler, M.; Ernst, W.E. Direct observation of a photochemical activation energy: A Case study of acetone photodissociation. J. Phys. B At. Mol. Opt. Phys. 2017, 50, 125102. [Google Scholar] [CrossRef]
- Arion, T.; Hergenhahn, U. Coincidence spectroscopy: Past, present and perspectives. J. Electron Spectrosc. Relat. Phenom. 2015, 200, 222–231. [Google Scholar] [CrossRef] [Green Version]
- Continetti, R.E. Coincidence Spectroscopy. Ann. Rev. Phys. Chem. 2001, 52, 165–192. [Google Scholar] [CrossRef] [PubMed]
- Maierhofer, P.; Bainschab, M.; Thaler, B.; Heim, P.; Ernst, W.E.; Koch, M. Disentangling multichannel photodissociation dynamics in acetone by time-resolved photoelectron-photoion coincidence spectroscopy. J. Phys. Chem. A 2016, 120, 6418–6423. [Google Scholar] [CrossRef] [PubMed]
- Couch, D.E.; Kapteyn, H.C.; Murnane, M.M.; Peters, W.K. Uncovering highly-excited state mixing in acetone using ultrafast VUV pulses and coincidence imaging techniques. J. Phys. Chem. A 2017, 121, 2361–2366. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, I.; Boguslavskiy, A.E.; Mikosch, J.; Bertrand, J.B.; Wörner, H.J.; Villeneuve, D.M.; Spanner, M.; Patchkovskii, S.; Stolow, A. Excited state dynamics in SO2. I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy. J. Chem. Phys. 2014, 140, 204301. [Google Scholar] [CrossRef] [Green Version]
- Hertel, I.V.; Radloff, W. Ultrafast dynamics in isolated molecules and molecular clusters. Rep. Prog. Phys. 2006, 69, 1897–2003. [Google Scholar] [CrossRef]
- Stert, V.; Radloff, W.; Schulz, C.P.; Hertel, I.V. Ultrafast photoelectron spectroscopy: Femtosecond pump-probe coincidence detection of ammonia cluster ions and electrons. Eur. Phys. J. D 1999, 5, 97–106. [Google Scholar] [CrossRef]
- Stolow, A.; Bragg, A.E.; Neumark, D.M. Femtosecond time-resolved photoelectron spectroscopy. Chem. Rev. 2004, 104, 1719–1757. [Google Scholar] [CrossRef] [PubMed]
- Nugent-Glandorf, L.; Scheer, M.; Samuels, D.A.; Mulhisen, A.M.; Grant, E.R.; Yang, X.; Bierbaum, V.M.; Leone, S.R. Ultrafast time-resolved soft X-ray photoelectron spectroscopy of dissociating Br2. Phys. Rev. Lett. 2001, 87, 193002. [Google Scholar] [CrossRef]
- Gregory, P. Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica® Support; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Loredo, T.J. The promise of bayesian inference for astrophysics. In Statistical Challenges in Modern Astronomy; Feigelson, E., Babu, G., Eds.; Springer: New York, NY, USA, 1992; pp. 275–297. [Google Scholar]
- Gertner, I.; Heber, O.; Zajfman, J.; Zajfman, D.; Rosner, B. Comparison between two computer codes for PIXE studies applied to trace element analysis in amniotic fluid. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1989, 36, 74–81. [Google Scholar] [CrossRef]
- Von der Linden, W.; Dose, V.; Padayachee, J.; Prozesky, V. Signal and background separation. Phys. Rev. E 1999, 59, 6527–6534. [Google Scholar] [CrossRef] [Green Version]
- Von der Linden, W.; Dose, V.; Fischer, R. How to separate the signal from the background. In Proceedings of the MAXENT96—Maximum Entropy Conference, Berg-en-Dal, South Africa, 12–17 August 1996; p. 146. [Google Scholar]
- Prozesky, V.M.; Padayachee, J.; Fischer, R.; von der Linden, W.; Dose, V.; Ryan, C.G. The use of maximum entropy and Bayesian techniques in nuclear microprobe applications. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1997, 130, 113–117. [Google Scholar] [CrossRef]
- Padayachee, J.; Prozesky, V.; von der Linden, W.; Nkwinika, M.S.; Dose, V. Bayesian PIXE background subtraction. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1999, 150, 129–135. [Google Scholar] [CrossRef]
- Fischer, R.; Hanson, K.M.; Dose, V.; von der Linden, W. Background estimation in experimental spectra. Phys. Rev. E 2000, 61, 1152–1160. [Google Scholar] [CrossRef]
- Rumetshofer, M.; Heim, P.; Thaler, B.; Ernst, W.E.; Koch, M.; von der Linden, W. Analysis of femtosecond pump-probe photoelectron-photoion coincidence measurements applying Bayesian probability theory. Phys. Rev. A 2018, 97, 062503. [Google Scholar] [CrossRef] [Green Version]
- Dörner, R.; Mergel, V.; Jagutzki, O.; Spielberger, L.; Ullrich, J.; Moshammer, R.; Schmidt-Böcking, H. Cold target recoil ion momentum spectroscopy: A momentum microscope to view atomic collision dynamics. Phys. Rep. 2000, 330, 95–192. [Google Scholar] [CrossRef]
- Ullrich, J.; Moshammer, R.; Dorn, A.; Dörner, R.; Schmidt, L.P.H.; Schmidt-Böcking, H. Recoil-ion and electron momentum spectroscopy: Reaction-microscopes. Rep. Prog. Phys. 2003, 66, 1463–1545. [Google Scholar] [CrossRef]
- Frasinski, L.J.; Codling, K.; Hatherly, P.A. Covariance mapping: A correlation method applied to multiphoton multiple ionization. Science 1989, 246, 1029–1031. [Google Scholar] [CrossRef] [PubMed]
- Mikosch, J.; Patchkovskii, S. Coincidence and covariance data acquisition in photoelectron and -ion spectroscopy. I. Formal theory. J. Mod. Opt. 2013, 60, 1426–1438. [Google Scholar] [CrossRef]
- Mikosch, J.; Patchkovskii, S. Coincidence and covariance data acquisition in photoelectron and -ion spectroscopy. II. Analysis and applications. J. Mod. Opt. 2013, 60, 1439–1451. [Google Scholar] [CrossRef]
- Koch, M.; Thaler, B.; Heim, P.; Ernst, W.E. The Role of Rydberg–Valence Coupling in the Ultrafast Relaxation Dynamics of Acetone. J. Phys. Chem. A 2017, 121, 6398–6404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heim, P.; Rumetshofer, M.; Ranftl, S.; Thaler, B.; Ernst, W.E.; Koch, M.; von der Linden, W. Bayesian Analysis of Femtosecond Pump-Probe Photoelectron-Photoion Coincidence Spectra. In Proceedings of the 38th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, London, UK, 2–6 July 2018; Volume 38. [Google Scholar]
- Von der Linden, W.; Dose, V.; von Toussaint, U. Bayesian Probability Theory: Applications in the Physical Sciences; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
λ | ||||
---|---|---|---|---|
Parameters (Figure 3a,b) | ||||
Algorithm in [22] | - | |||
Algorithm with -fluctuations | ||||
Parameters (Figure 3c,d) | ||||
Algorithm in [22] | - | |||
Algorithm with -fluctuations |
λ | λ | |||||
---|---|---|---|---|---|---|
(a) | ||||||
- | - | |||||
(b) | ||||||
- | - | |||||
(c) | ||||||
- | - | |||||
(d) | ||||||
- | - | |||||
λ | λ | ||||
---|---|---|---|---|---|
- | - | ||||
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heim, P.; Rumetshofer, M.; Ranftl, S.; Thaler, B.; Ernst, W.E.; Koch, M.; von der Linden, W. Bayesian Analysis of Femtosecond Pump-Probe Photoelectron-Photoion Coincidence Spectra with Fluctuating Laser Intensities. Entropy 2019, 21, 93. https://doi.org/10.3390/e21010093
Heim P, Rumetshofer M, Ranftl S, Thaler B, Ernst WE, Koch M, von der Linden W. Bayesian Analysis of Femtosecond Pump-Probe Photoelectron-Photoion Coincidence Spectra with Fluctuating Laser Intensities. Entropy. 2019; 21(1):93. https://doi.org/10.3390/e21010093
Chicago/Turabian StyleHeim, Pascal, Michael Rumetshofer, Sascha Ranftl, Bernhard Thaler, Wolfgang E. Ernst, Markus Koch, and Wolfgang von der Linden. 2019. "Bayesian Analysis of Femtosecond Pump-Probe Photoelectron-Photoion Coincidence Spectra with Fluctuating Laser Intensities" Entropy 21, no. 1: 93. https://doi.org/10.3390/e21010093
APA StyleHeim, P., Rumetshofer, M., Ranftl, S., Thaler, B., Ernst, W. E., Koch, M., & von der Linden, W. (2019). Bayesian Analysis of Femtosecond Pump-Probe Photoelectron-Photoion Coincidence Spectra with Fluctuating Laser Intensities. Entropy, 21(1), 93. https://doi.org/10.3390/e21010093