Entropy and Gravitation—From Black Hole Computers to Dark Energy and Dark Matter
Abstract
:1. Introduction
2. Quantum Fluctuations of Spacetime
2.1. Gedanken Experiment
2.2. Mapping the Geometry of Spacetime
3. Clocks, Computers and Black Holes
4. Dark Energy
4.1. Spacetime Foam and Dark Energy
4.2. Dark Energy as Quanta of Infinite Statistics
5. From Causal-Set Theory and Unimodular Gravity to Space-Time Foam
6. Dark Matter
6.1. From Gravitational Thermodynamics /Entropic Gravity to MDM
- (I)
- Newton’s 2nd law :
- (a)
- Verlinde uses the first law of thermodynamics to propose the concept of entropic force
- (b)
- Then he invokes Bekenstein’s original arguments concerning the entropy S of black holes: .
- (c)
- Finally he applies the formula for the Unruh temperature, associated with a uniformly accelerating (Rindler) observer.
- (II)
- Newton’s law of gravity :
- (a)
- Verlinde considers an imaginary quasi-local (spherical) holographic screen of area with temperature T.
- (b)
- Then he uses equipartition of energy with being the total number of degrees of freedom (bits) on the screen.
- (c)
- Finally he applies the Unruh temperature formula and .
6.2. Quanta of MDM Obey Infinite Statistics
6.3. Observational Tests of MDM
7. Turbulence and Spacetime Foam
8. Summary and Discussion
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Energy-Momentum Fluctuations and Possible Tests of Spacetime Foam
Appendix A.1. Energy-Momentum Fluctuations
Appendix A.2. Possible Ways to Test Spacetime Foam
Appendix B. Infinite Statistics
References
- Lloyd, S.; Ng, Y.J. Black Hole Computers. Sci. Am. 2004, 291, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, J.A. Relativity, Groups and Topology; DeWitt, B.S., DeWitt, C.M., Eds.; Gordon & Breach: New York, NY, USA, 1963; p. 315. [Google Scholar]
- Hawking, S.W.; Page, D.N.; Pope, C.N. Quantum Gravitational Bubbles. Nucl. Phys. 1980, 170, 283–306. [Google Scholar] [CrossRef]
- Ashtekar, A.; Rovelli, C.; Smolin, L. Weaving a Classical Geometry with Quantum Threads. Phys. Rev. Lett. 1992, 69, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Ng, Y.J.; van Dam, H. Limit to Spacetime Measurement. Mod. Phys. Lett. A 1994, 9, 335–340. [Google Scholar]
- Ng, Y.J.; van Dam, H. Remarks on Gravitational Sources. Mod. Phys. Lett. A 1995, 10, 2801–2808. [Google Scholar] [CrossRef]
- Salecker, H.; Wigner, E.P. Quantum Limitations of the Measurement of Space-Time Distances. Phys. Rev. 1958, 109, 571–577. [Google Scholar] [CrossRef]
- Karolyhazy, F. Gravitation and Quantum Mechanics of Macroscopic Objects. Il Nuovo Cimento 1966, A 42, 390–402. [Google Scholar] [CrossRef]
- Sasakura, N. An Uncertainty Relation of Space-Time. Prog. Theor. Phys. 1999, 102, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Margolus, N.; Levitin, L.B. The Maximum Speed of Dynamical Evolution. Physica D 1998, 120, 188–195. [Google Scholar] [CrossRef]
- ’t Hooft, G. Salamfestschrift; Ali, A., Ellis, J., Randjbar-Daemi, S., Eds.; World Scientific: Singapore, 1993; p. 284. [Google Scholar]
- Susskind, L. The World as a Hologram. J. Math. Phys. (N. Y.) 1995, 36, 6377–6396. [Google Scholar] [CrossRef]
- Maldacena, J. The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 1998, 2, 231–252. [Google Scholar] [CrossRef]
- Gambini, R.; Pullin, J. Holography in Spherically Symmetric Loop Quantum Gravity. Int. J. Mod. Phys. D 2008, 17, 545–549. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black Holes and Entropy. Phys. Rev. 1973, D 7, 2333–2346. [Google Scholar] [CrossRef]
- Hawking, S. Particle Creation by Black Holes. Comm. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Ng, Y.J. From Computation to Black Holes and Space-time Foam. Phys. Rev. Lett. 2001, 86, 2946–2949, Erratum in 2002, 88, 139902. [Google Scholar] [CrossRef] [PubMed]
- Barrow, J.D. Wigner Inequalities for Black Holes. Phys. Rev. D 1996, 54, 6563–6564. [Google Scholar] [CrossRef] [PubMed]
- Arzano, M.; Kephart, T.W.; Ng, Y.J. From Spacetime Foam to Holographic Foam Cosmology. Phys. Lett. 2007, B 649, 243–246. [Google Scholar] [CrossRef]
- Maziashvili, M. Space-Time in Light of Karolyhazy Uncertainty Relation. Int. J. Mod. Phys. D 2007, 16, 1531–1539. [Google Scholar] [CrossRef]
- Ng, Y.J. Holographic Foam, Dark Energy and Infinite Statistics. Phys. Lett. B 2007, 657, 10–14. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Omega and Lambda from 42 High-Redshift Supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiattia, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef] [Green Version]
- Fischler, W.; Susskind, L. Holography and Cosmology. arXiv 1998, arXiv:hep-th/9806039. [Google Scholar]
- Easther, R.; Lowe, D. Holography, Cosmology, and the Second Law of Thermodynamics. Phys. Rev. Lett. 1999, 82, 4967–4970. [Google Scholar] [CrossRef] [Green Version]
- Ng, Y.J. Proceedings of the Fortieth Karpacz Winter School on Theoretical Physics; Kowalski-Glikman, J., Amelino-Camelia, G., Eds.; Springer: Berlin, Germany, 2005; p. 321. [Google Scholar]
- Doplicher, S.; Haag, R.; Roberts, J. Local Observables and Particle Statistics I. Commun. Math. Phys. 1971, 23, 199–230. [Google Scholar] [CrossRef]
- Doplicher, S.; Haag, R.; Roberts, J. Local Observables and Particle Statistics II. Commun. Math. Phys. 1974, 35, 49–85. [Google Scholar] [CrossRef]
- Greenberg, O.W. Example of Infinite Statistics. Phys. Rev. Lett. 1990, 64, 705–708. [Google Scholar] [CrossRef]
- Jejjala, V.; Kavic, M.; Minic, D. Fine Structure of Dark Energy and New Physics. Adv. High Energy Phys. 2007, 21586, 2007. [Google Scholar] [CrossRef]
- D’Olivo, J.C.; Nahmad-Achar, E.; Rosenbaum, M.; Ryan, M.P.; Urrutiaet, L.F., Jr. Relativity and Gravitation: Classical and Quantum. In Proceedings of the 7th Latin American Symposium on Relativity and Gravitation (SILARG VII), Cocoyoc, Mexico, 2–8 December 1990. [Google Scholar]
- Van der Bij, J.J.; van Dam, H.; Ng, Y.J. The Exchange of Massless Spin-Two Particles. Physica 1982, A116, 307–320. [Google Scholar] [CrossRef]
- Anderson, J.L.; Finkelstein, D. Cosmological Constant and Fundamental Length. Am. J. Phys. 1971, 39, 901. [Google Scholar] [CrossRef]
- Ng, Y.J.; van Dam, H. Possible solution to the cosmological-constant problem. Phys. Rev. Lett. 1990, 65, 1972–1974. [Google Scholar] [CrossRef]
- Ng, Y.J.; van Dam, H. A small but nonzero cosmological constant. Int. J. Mod. Phys. D 2001, 10, 49–55. [Google Scholar] [CrossRef]
- Ng, Y.J. Selected topics in Planck-scale physics. Mod. Phys. Lett. A 2003, 18, 1073–1098. [Google Scholar] [CrossRef]
- Barrow, J.D.; Shaw, D. New Solution of the Cosmological Constant Problems. Phys. Rev. Lett. 2011, 106, 101302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henneaux, M.; Teitelboim, C. The cosmological constant and general covariance. Phys. Lett. B 1989, 222, 195. [Google Scholar] [CrossRef]
- Baum, E. Zero cosmological constant frm minimum action. Phys. Lett. B 1983, 133, 185–186. [Google Scholar] [CrossRef]
- Hawking, S.W. The cosmological constant is probably zero. Phys. Lett. B 1984, 134, 403–404. [Google Scholar] [CrossRef]
- Tulin, S.; Yu, H.B. Dark Matter Self-interactions and Small Scale Structure. Phys. Rept. 2018, 730, 1–57. [Google Scholar] [CrossRef]
- Milgrom, M. A Modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 1983, 70, 36365–36370. [Google Scholar] [CrossRef]
- Tully, R.B.; Fisher, J.R. A New method of determining distances to galaxies. Astron. Astrophys. 1977, 54, 661–673. [Google Scholar]
- Milgrom, M.; Sanders, R.H. Rings and shells of dark matter as MOND artifacts. Astrophys. J. 2008, 678, 131–143. [Google Scholar] [CrossRef]
- McGaugh, S.; Lelli, F.; Schombert, J. Radial Acceleration Relation in Rotationally Supported Galaxies. Phys. Rev. Lett. 2016, 117, 201101. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.M.; Minic, D.; Ng, Y.J. Cold Dark Matter with MOND Scaling. Phys. Lett. B 2010, 693, 567–570. [Google Scholar] [CrossRef]
- Ho, C.M.; Minic, D.; Ng, Y.J. Quantum Gravity and Dark Matter. Int. J. Mod. Phys. D 2011, 20, 2887–2893. [Google Scholar] [CrossRef]
- Cadoni, M.; Casadio, R.; Giusti, A.; Mück, W.; Tuveri, M. Effective Fluid Description of the Dark Universe. Phys. Lett. B 2018, 776, 242. [Google Scholar] [CrossRef]
- Jacobson, T. Thermodynamics of space-time: The Einstein equation of state. Phys. Rev. Lett. 1995, 75, 1260–1263. [Google Scholar] [CrossRef] [PubMed]
- Verlinde, E.P. On the Origin of Gravity and the Laws of Newton. JHEP 2011, 1104, 029. [Google Scholar] [CrossRef]
- Padmanabhan, T. Emergent Gravity Paradigm: Recent Progress. Mod. Phys. Lett. A 2015, 30, 1540007. [Google Scholar] [CrossRef]
- Chakraborty, S.; Padmanabhan, T. Thermodynamical interpretation of the geometrical variables associated with null surfaces. Phys. Rev. D 2015, 92, 104011. [Google Scholar] [CrossRef]
- Davies, P.C.W. Scalar particle production in Schwarzschild and Rindler metrics. J. Phys. A 1975, 8, 609–616. [Google Scholar] [CrossRef]
- Unruh, W.G. Notes on black hole evaporation. Phys. Rev. D 1976, 14, 870. [Google Scholar] [CrossRef]
- Deser, S.; Levin, O. Accelerated detectors and temperature in (anti)-deSitter spaces. Class. Quant. Grav. 1997, 14, L163–L168. [Google Scholar] [CrossRef]
- Jacobson, T. Comment on ‘Accelerated detectors and temperature in anti-de Sitter spaces’. Class. Quant. Grav. 1998, 15, 251–253. [Google Scholar] [CrossRef]
- Ho, C.M.; Minic, D.; Ng, Y.J. Dark Matter, Infinite Statistics and Quantum Gravity. Phys. Rev. D 2012, 85, 104033. [Google Scholar] [CrossRef]
- Blanchet, L. Gravitational polarization and the phenomenology of MOND. Class. Quant. Grav. 2007, 24, 35293540. [Google Scholar] [CrossRef]
- Gibbons, G.W. Aspects of Born-Infeld theory and string/M theory. Rev. Mex. Fis. 2003, 49S1, 19–29. [Google Scholar]
- Edmonds, D.; Farrah, D.; Ho, C.M.; Minic, D.; Ng, Y.J.; Takeuchi, T. Testing MONDian Dark Matter with Galactic Rotation Curves. ApJ 2014, 793, 41. [Google Scholar] [CrossRef]
- Edmonds, D.; Farrah, D.; Ho, C.M.; Minic, D.; Ng, Y.J.; Takeuchi, T. Testing modified dark matter with galaxy clusters: Does dark matter know about the cosmological constant? Int. J. Mod. Phys. A 2017, 32, 1750108. [Google Scholar] [CrossRef]
- Cadoni, M.; Casadio, R.; Giusti, A.; Tuveri, M. Emergence of a Dark Force in Corpuscular Gravity. Phys. Rev. D 2018, 97, 044047. [Google Scholar] [CrossRef]
- Edmonds, D.; Farrah, D.; Minic, D.; Ng, Y.J.; Takeuchi, T. Modified Dark Matter: Relating Dark Energy, Dark Matter and Baryonic Matter. Int. J. Mod. Phys. D 2018, 27, 1830001. [Google Scholar] [CrossRef]
- Tolman, R.C. On the Weight of Heat and Thermal Equilibrium in General Relativity. Phys. Rev. 1930, 35, 904–924. [Google Scholar] [CrossRef] [Green Version]
- Tolman, R.C.; Paul Ehrenfest, P. Temperature Equilibrium in a Static Gravitational Field. Phys. Rev. 1930, 36, 1791–1798. [Google Scholar] [CrossRef] [Green Version]
- Sanders, R.H. Resolving the virial discrepancy in clusters of galaxies with modified newtonian dynamics. Astrophys. J. 1999, 512, L23. [Google Scholar] [CrossRef]
- Ng, Y.J.; Edmonds, D.; Farrah, D.; Minic, D.; Takeuchi, T.; Ho, C.M. Modified Dark Matter. In Proceedings of the 14th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories (MG14) (In 4 Volumes), Rome, Italy, 12–18 July 2015; Bianchi, M., Jantzen, R.T., Ruffini, R., La Sapienza, U.R., Eds.; World Scientific: Singapore, 2017; p. 3942. [Google Scholar]
- Chu, X.; Garcia-Cely, C.; Murayama, H. Puffy Dark Matter. arXiv 2019, arXiv:1901.00075. [Google Scholar]
- Kolmogorov, A.N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk SSSR 1941, 30, 299–303. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk SSSR 1941, 32, 16–18. [Google Scholar] [CrossRef]
- Jejjala, V.; Minic, D.; Ng, Y.J.; Tze, C.H. Turbulence and holography. Class. Quant. Grav. 2008, 25, 225012. [Google Scholar] [CrossRef]
- Unruh, W. Dumb holes and the effects of high frequencies on black hole evaporation. Phys. Rev. D 1995, 51, 2827–2838. [Google Scholar] [CrossRef]
- Wheeler, J.A. Geons. Phys. Rev. 1955, 97, 511–536. [Google Scholar] [CrossRef]
- Strominger, A. Black Hole Statistics. Phys. Rev. Lett. 1993, 71, 3397–3400. [Google Scholar] [CrossRef]
- Volovich, I.V. D-branes, Black Holes and SU(∞) Gauge Theory. arXiv 1996, arXiv:hep-th/9608137. [Google Scholar]
- Maldacena, J.; Susskind, L. Cool horizons for entangled black holes. Fortsch. Phys. 2013, 61, 781. [Google Scholar] [CrossRef]
- Adler, S.L. Quantum Theory as an Emergent Phenomenon; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Singh, T.P. Proposal for a new quantum theory of gravity. arXiv 2019, arXiv:1910.06350. [Google Scholar] [CrossRef]
- Amelino-Camelia, G.; Ellis, J.; Mavromatos, N.E.; Nanopoulos, D.V.; Sarkar, S. Tests of Quantum Gravity from Observations of γ-Ray Bursts. Nature 1998, 393, 763–765. [Google Scholar] [CrossRef]
- Ng, Y.J.; Christiansen, W.A.; van Dam, H. Probing Planck-scale Physics with Extragalacic Sources? Astrophys. J. 2003, 591, L87–L90. [Google Scholar] [CrossRef]
- Lieu, R.; Hillman, L.W. The Phase Coherenece of Light from Extragalactic Sources—Direct Evidence Against First Order Planck Scale Fluctuations in Time and Space. Astrophys. J. 2003, 585, L77–L80. [Google Scholar] [CrossRef]
- Christiansen, W.A.; Ng, Y.J.; van Dam, H. Probing Spacetime Foam with Extragalactic Sources. Phys. Rev. Lett. 2006, 96, 051301. [Google Scholar] [CrossRef] [Green Version]
- Perlman, E.S.; Rappaport, S.A.; Christiansen, W.A.; Ng, Y.J.; DeVore, J.; Pooley, D. New Constraints on Quantum Gravity from X-ray and Gamma-Ray Observations. Astrophys. J. 2015, 805, 10. [Google Scholar] [CrossRef]
- Perlman, E.S.; Rappaport, S.A.; Ng, Y.J.; Christiansen, W.A.; DeVore, J.; Pooley, D. New constraints on quantum foam models from X-ray and gamma-ray observations of distant quasars. In Proceedings of the 14th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories (MG14) (In 4 Volumes), Rome, Italy, 12–18 July 2015; Bianchi, M., Jantzen, R.T., Ruffini, R., La Sapienza, U.R., Eds.; World Scientific: Singapore, 2017; p. 3935. [Google Scholar]
- Amelino-Camelia, G. Limits on the Measurability of Space-Time Distances in the Semi-Classical Approximation of Quantum Gravity. Mod. Phys. Lett. A 1994, 9, 3415–3422. [Google Scholar] [CrossRef]
- Amelino-Camlia, G. An Interferometric Gravitational Wave Detector as a Quantum-Gravity Apparatus. Nature 1999, 398, 216–218. [Google Scholar] [CrossRef]
- Ng, Y.J.; van Dam, H. Measuring the Foaminess of Spacetime with Gravity-Wave Interferometers. Found. Phys. 2000, 30, 795–805. [Google Scholar] [CrossRef]
- Fredenhagen, K. On the Existence of Antiparticles. Commun. Math. Phys. 1981, 79, 141–151. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ng, Y.J. Entropy and Gravitation—From Black Hole Computers to Dark Energy and Dark Matter. Entropy 2019, 21, 1035. https://doi.org/10.3390/e21111035
Ng YJ. Entropy and Gravitation—From Black Hole Computers to Dark Energy and Dark Matter. Entropy. 2019; 21(11):1035. https://doi.org/10.3390/e21111035
Chicago/Turabian StyleNg, Y. Jack. 2019. "Entropy and Gravitation—From Black Hole Computers to Dark Energy and Dark Matter" Entropy 21, no. 11: 1035. https://doi.org/10.3390/e21111035
APA StyleNg, Y. J. (2019). Entropy and Gravitation—From Black Hole Computers to Dark Energy and Dark Matter. Entropy, 21(11), 1035. https://doi.org/10.3390/e21111035