Rényi and Tsallis Entropies of the Aharonov–Bohm Ring in Uniform Magnetic Fields
Abstract
:1. Introduction
2. Entropies in Uniform Magnetic Field
2.1. Position Components
2.2. Momentum Components
2.3. Uncertainty Relations
2.3.1. Tsallis Entropy
2.3.2. Rényi Entropy
3. AB Rényi Entropy
4. Conclusions
Funding
Conflicts of Interest
Abbreviations
AB | Aharonov-Bohm |
nD | n-dimensional |
QD | Quantum dot |
QR | Quantum Rring |
References
- Fomin, V.M. Physics of Quantum Rings; Springer: Berlin, Germany, 2014. [Google Scholar]
- Olendski, O. Quantum information measures of the Aharonov–Bohm ring in uniform magnetic fields. Phys. Lett. A 2019, 383, 1110–1122. [Google Scholar] [CrossRef]
- Aharonov, Y.; Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 1959, 115, 485–491. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Bogachek, E.N.; Landman, U. Edge states, Aharonov-Bohm oscillations, and thermodynamic and spectral properties in a two-dimensional electron gas with an antidot. Phys. Rev. B 1995, 52, 14067. [Google Scholar] [CrossRef]
- Tan, W.-C.; Inkson, J.C. Landau quantization and the Aharonov-Bohm effect in a two-dimensional ring. Phys. Rev. B 1996, 53, 6947–6950. [Google Scholar] [CrossRef]
- Tan, W.-C.; Inkson, J.C. Electron states in a two-dimensional ring-an exactly soluble model. Semicond. Sci. Technol. 1996, 11, 1635–1641. [Google Scholar] [CrossRef]
- Tan, W.-C.; Inkson, J.C. Magnetization, persistent currents, and their relation in quantum rings and dots. Phys. Rev. B 1999, 60, 5626–5635. [Google Scholar] [CrossRef]
- Fukuyama, H.; Sasaki, T.; Yokoyama, K.; Ishikawa, Y. Orbital magnetism in two-dimensional systems. J. Low Temp. Phys. 2002, 126, 1067–1080. [Google Scholar] [CrossRef]
- Bulaev, D.V.; Geyler, V.A.; Margulis, V.A. Effect of surface curvature on magnetic moment and persistent currents in two-dimensional quantum rings and dots. Phys. Rev. B 2004, 69, 195313. [Google Scholar] [CrossRef]
- Simonin, J.; Proetto, C.R.; Barticevic, Z.; Fuster, G. Single-particle electronic spectra of quantum rings: A comparative study. Phys. Rev. B 2004, 70, 205305. [Google Scholar] [CrossRef]
- Margulis, V.A.; Mironov, V.A. Magnitnyi moment kol’ca Volkano. Fiz. Tverd. Tela (S.-Peterburg) 2008, 50, 148–153. [Google Scholar]
- Olendski, O.; Barakat, T. Magnetic field control of the intraband optical absorption in two-dimensional quantum rings. J. Appl. Phys. 2014, 115, 083710. [Google Scholar] [CrossRef] [Green Version]
- Xiao, M.; Reyes-Serrato, A. Analytic Aharonov-Bohm rings: currents readout from Zeeman spectrum. Int. J. Mod. Phys. B 2016, 30, 1650106. [Google Scholar] [CrossRef]
- Negrete, O.A.; Peña, F.J.; Vargas, P. Magnetocaloric effect in an antidot: the effect of the Aharonov-Bohm flux and antidot radius. Entropy 2018, 20, 888. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions; Dover: New York, USA, 1964. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 8th ed.; Academic Press: New York, NY, USA, 2014. [Google Scholar]
- Białynicki-Birula, I.; Mycielski, J. Uncertainty relations for information entropy in wave mechanics. Commun. Math. Phys. 1975, 44, 129–132. [Google Scholar] [CrossRef]
- Beckner, W. Inequalities in Fourier analysis. Ann. Math. 1975, 102, 159–182. [Google Scholar] [CrossRef]
- Büttiker, M.; Imry, Y.; Landauer, R. Josephson behavior in small normal one-dimensional rings. Phys. Lett. A 1983, 96, 365–367. [Google Scholar] [CrossRef]
- Rényi, A. On Measures of Entropy and Information. In Contributions to the Theory of Statistics, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, University of California: Davis, CA, USA, 20 June–30 July 1960; Neyman, J., Ed.; University of California Press: Berkeley, CA, USA, 1961; pp. 547–561. [Google Scholar]
- Rényi, A. Probability Theory; North-Holland: Amsterdam, The Netherlands, 1970. [Google Scholar]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Havrda, J.; Charvát, F. Quantification method of classification processes. Concept of structural a-entropy. Kybernetika 1967, 3, 30–35. [Google Scholar]
- Daróczy, Z. Generalized information functions. Inform. Control 1970, 16, 36–51. [Google Scholar] [CrossRef] [Green Version]
- Onicescu, O. Énergie informationnelle. C. R. Acad. Sci. Ser. A 1966, 263, 841–842. [Google Scholar]
- Beckner, W. Inequalities in Fourier analysis on Rn. Proc. Natl. Acad. Sci. USA 1975, 72, 638–641. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, A.K. The Sobolev inequality and the Tsallis entropic uncertainty relation. Phys. Lett. A 1995, 205, 32–36. [Google Scholar] [CrossRef]
- Białynicki-Birula, I. Formulation of the uncertainty relations in terms of the Rényi entropies. Phys. Rev. A 2006, 74, 052101. [Google Scholar] [CrossRef]
- Zozor, S.; Vignat, C. On classes of non-Gaussian asymptotic minimizers in entropic uncertainty principles. Phys. A 2007, 375, 499–517. [Google Scholar] [CrossRef] [Green Version]
- Olendski, O. Rényi and Tsallis entropies: three analytic examples. Eur. J. Phys. 2019, 40, 025402. [Google Scholar] [CrossRef]
- Jizba, P.; Arimitsu, T. The world according to Rényi: thermodynamics of multifractal systems. Ann. Phys. (N.Y.) 2004, 312, 17–59. [Google Scholar] [CrossRef]
- Jizba, P.; Dunningham, J.A.; Joo, J. Role of information theoretic uncertainty relations in quantum theory. Ann. Phys. (N.Y.) 2015, 355, 87–115. [Google Scholar] [CrossRef]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics; Springer: New York, NY, USA, 2009. [Google Scholar]
- Tsallis, C. The nonadditive entropy Sq and its applications in physics and elsewhere: some remarks. Entropy 2011, 13, 1765–1804. [Google Scholar] [CrossRef]
- Geilikman, M.B.; Golubeva, T.V.; Pisarenko, V.F. Multifractal patterns of seismicity. Earth Planet. Sci. Lett. 1990, 99, 127–132. [Google Scholar] [CrossRef]
- Carranza, M.L.; Acosta, A.; Ricotta, C. Analyzing landscape diversity in time: the use of Rényi’s generalized entropy function. Ecol. Indic. 2007, 7, 505–510. [Google Scholar] [CrossRef]
- Rocchini, D.; Delucchi, L.; Bacaro, G.; Cavallini, P.; Feilhauer, H.; Foody, G.M.; He, K.S.; Nagendra, H.; Porta, C.; Ricotta, C.; et al. Calculating landscape diversity with information-theory based indices: A GRASS GIS solution. Ecol. Inf. 2013, 17, 82–93. [Google Scholar] [CrossRef]
- Drius, M.; Malavasi, M.; Acosta, A.T.R.; Ricotta, C.; Carranza, M.L. Boundary-based analysis for the assessment of coastal dune landscape integrity over time. Appl. Geogr. 2013, 45, 41–48. [Google Scholar] [CrossRef]
- Rosso, O.A.; Martin, M.T.; Figliola, A.; Keller, K.; Plastino, A. EEG analysis using wavelet-based information tools. J. Neurosci. Meth. 2006, 153, 163–182. [Google Scholar] [CrossRef]
- Tozzi, A.; Peters, J.F.; Çankaya, M.N. The informational entropy endowed in cortical oscillations. Cogn. Neurodyn. 2018, 12, 501–507. [Google Scholar] [CrossRef]
- Costa, M.; Goldberger, A.L.; Peng, C.-K. Multiscale entropy analysis of biological signals. Phys. Rev. E 2005, 71, 021906. [Google Scholar] [CrossRef]
- Aptekarev, A.I.; Dehesa, J.S.; Sánchez-Moreno, P.; Tulyakov, D.N. Rényi entropy of the infinite well potential in momentum space and Dirichlet-like trigonometric functionals. J. Math. Chem. 2012, 50, 1079–1090. [Google Scholar] [CrossRef]
- Toranzo, I.V.; Dehesa, J.S. Rényi, Shannon and Tsallis entropies of Rydberg hydrogenic systems. Europhys. Lett. 2016, 113, 48003. [Google Scholar] [CrossRef]
- Dehesa, J.S.; Toranzo, I.V.; Puertas-Centeno, D. Entropic measures of Rydberg-like harmonic states. Int. J. Quantum Chem. 2016, 117, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Aptekarev, A.I.; Tulyakov, D.N.; Toranzo, I.V.; Dehesa, J.S. Rényi entropies of the highly-excited states of multidimensional harmonic oscillators by use of strong Laguerre asymptotics. Eur. Phys. J. B 2016, 89, 85. [Google Scholar] [CrossRef]
- Nasser, I.; Zeama, M.; Abdel-Hady, A. The Rényi entropy, a comparative study for He-like atoms using the exponential-cosine screened Coulomb potential. Results Phys. 2017, 7, 3892–3900. [Google Scholar] [CrossRef]
- Mukherjee, N.; Roy, A.K. Information-entropic measures in free and confined hydrogen atom. Int. J. Quantum Chem. 2018, 118, e25596. [Google Scholar] [CrossRef]
- Mukherjee, N.; Roy, A.K. Information-entropic measures in confined isotropic harmonic oscillator. Adv. Theory Simul. 2018, 1, 1800090. [Google Scholar] [CrossRef]
- Ou, J.-H.; Ho, Y.K. Benchmark calculations of Rényi, Tsallis entropies, and Onicescu information energy for ground state helium using correlated Hylleraas wave functions. Int. J. Quantum Chem. 2019, 119, e25928. [Google Scholar] [CrossRef]
- Zeama, M.; Nasser, I. Tsallis entropy calculation for non-Coulombic helium. Physica A 2019, 528, 121468. [Google Scholar] [CrossRef]
- Ou, J.-H.; Ho, Y.K. Shannon, Rényi, Tsallis entropies and Onicescu information energy for low-lying singly excited states of helium. Atoms 2019, 7, 70. [Google Scholar] [CrossRef]
- Klebanov, I.R.; Pufu, S.S.; Sachdev, S.; Safdi, B.R. Rényi entropies for free field theories. J. High Energy Phys. 2012, 2012, 74. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, J. On short interval expansion of Rényi entropy. J. High Energy Phys. 2013, 2013, 164. [Google Scholar] [CrossRef]
- Dong, X. The gravity dual of Rényi entropy. Nature Commun. 2016, 7, 12472. [Google Scholar] [CrossRef]
- Islam, R.; Ma, R.; Preiss, P.M.; Tai, M.E.; Lukin, A.; Rispoli, M.; Greiner, M. Measuring entanglement entropy in a quantum many-body system. Nature 2015, 528, 77–83. [Google Scholar] [CrossRef]
- Kaufman, A.M.; Tai, M.E.; Lukin, A.; Rispoli, M.; Schittko, R.; Preiss, P.M.; Greiner, M. Quantum thermalization through entanglement in an isolated many-body system. Science 2016, 353, 794–800. [Google Scholar] [CrossRef] [Green Version]
- Brydges, T.; Elben, A.; Jurcevic, P.; Vermersch, B.; Maier, C.; Lanyon, B.P.; Zoller, P.; Blatt, R.; Roos, C.F. Probing Rényi entanglement entropy via randomized measurements. Science 2019, 364, 260–263. [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series; Gordon and Breach: New York, NY, USA, 1992; Volume 2. [Google Scholar]
- Fikhtengol’ts, G.M. The Fundamentals of Mathematical Analysis; Pergamon: Oxford, UK, 1965; Volume 2. [Google Scholar]
- Wehner, S.; Winter, A. Entropic uncertainty relations—A survey. New J. Phys. 2010, 12, 025009. [Google Scholar] [CrossRef]
- Coles, P.J.; Berta, M.; Tomamichel, M.; Wehner, S. Entropic uncertainty relations and their applications. Rev. Mod. Phys. 2017, 89, 015002. [Google Scholar] [CrossRef] [Green Version]
- De Palma, G.; Trevisan, D.; Giovannetti, V.; Ambrosio, L. Gaussian optimizers for entropic inequalities in quantum information. J. Math. Phys. 2018, 59, 081101. [Google Scholar] [CrossRef]
- Aharonov, Y.; Bohm, D. Further considerations on electromagnetic potentials in the quantum theory. Phys. Rev. 1961, 123, 1511–1524. [Google Scholar] [CrossRef]
- Merzbacher, E. Single valuedness of wave fucntions. Am. J. Phys. 1962, 30, 237–247. [Google Scholar] [CrossRef]
- Feĭnberg, E.L. Ob “osoboi” roli elektromagnitnych potencialov v kvantovoi mechanike. Usp. Fiz. Nauk 1962, 78, 53–64. [Google Scholar]
- Peshkin, M. Aharonov-Bohm effect in bound states: theoretical and experimental status. Phys. Rev. A 1981, 23, 360–361. [Google Scholar] [CrossRef]
- Tinoco, I., Jr.; Woody, R.W. Optical rotation of oriented helices. IV. A free electron on a helix. J. Chem. Phys. 1964, 40, 160–165. [Google Scholar] [CrossRef]
- Kibis, O.V.; Malevannyy, S.V.; Huggett, L.; Parfitt, D.G.W.; Portnoi, M.E. Superlattice properties of helical nanostructures in a transverse electric field. Electromagnetics 2005, 25, 425–435. [Google Scholar] [CrossRef]
- Vorobyova, J.S.; Vorob’ev, A.B.; Prinz, V.Y.; Toropov, A.I.; Maude, D.K. Magnetotransport in two- dimensional electron gas in helical nanomembranes. Nano Lett. 2015, 15, 1673–1678. [Google Scholar] [CrossRef]
- Downing, C.A.; Robinson, M.G.; Portnoi, M.E. Nanohelices as superlattices: Bloch oscillations and electric dipole transitions. Phys. Rev. B 2016, 94, 155306. [Google Scholar] [CrossRef] [Green Version]
- Antolín, J.; López-Rosa, S.; Angulo, J.C. Renyi complexities and information planes: Atomic structure in conjugated spaces. Chem. Phys. Lett. 2009, 474, 233–237. [Google Scholar] [CrossRef]
- Nath, D.; Chosh, P. A generalized statistical complexity based on Rényi entropy of a noncommutative anisotropic oscillator in a homogeneous magnetic field. Int. J. Mod. Phys. A 2019, 34, 1950105. [Google Scholar] [CrossRef]
- Coles, P.J.; Katariya, V.; Lloyd, S.; Marvian, I.; Wilde, M.M. Entropic energy-time uncertainty relation. Phys. Rev. Lett. 2019, 122, 100401. [Google Scholar] [CrossRef]
- Rastegin, A.E. On entropic uncertainty relations for measurements of energy and its “complement”. Ann. Phys. 2019, 531, 1800466. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olendski, O. Rényi and Tsallis Entropies of the Aharonov–Bohm Ring in Uniform Magnetic Fields. Entropy 2019, 21, 1060. https://doi.org/10.3390/e21111060
Olendski O. Rényi and Tsallis Entropies of the Aharonov–Bohm Ring in Uniform Magnetic Fields. Entropy. 2019; 21(11):1060. https://doi.org/10.3390/e21111060
Chicago/Turabian StyleOlendski, Oleg. 2019. "Rényi and Tsallis Entropies of the Aharonov–Bohm Ring in Uniform Magnetic Fields" Entropy 21, no. 11: 1060. https://doi.org/10.3390/e21111060
APA StyleOlendski, O. (2019). Rényi and Tsallis Entropies of the Aharonov–Bohm Ring in Uniform Magnetic Fields. Entropy, 21(11), 1060. https://doi.org/10.3390/e21111060