Uncovering the Dependence of Cascading Failures on Network Topology by Constructing Null Models
Abstract
:1. Introduction
2. Constructing Null Models of the Internet
2.1. Network Parameters
- Assortativity Coefficient
- Clustering Coefficient
- Rich-club Coefficient
- Modularity Coefficient
2.2. Synthetic Networks Generated by Null Models
2.2.1. dK-Series of Null Networks
2.2.2. Null Networks of Tunable Properties
3. Cascading Failure Model
4. Main Results
4.1. Cascading Failures in Null Networks of Different Orders
4.2. Cascading Failures in Null Networks of Tunable Assortativity
4.3. Cascading Failures in Null Networks of Tunable Clustering Coefficient
4.4. Cascading Failures in Null Networks of Tunable Rich-Club Property
4.5. Cascading Failures in Null Networks of Tunable Community Structure
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dorogovtsev, S.N.; Goltsev, A.V.; Mendes, J.F.F. Critical phenomena in complex networks. Rev. Mod. Phys. 2008, 80, 1275–1335. [Google Scholar] [CrossRef]
- Newman, M.J. Networks: An Introduction; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Giulio, C.; Tizano, S.; Fabio, S.; Diego, G.; Andrea, G.; Guido, C. The statistical physics of real-world networks. Nat. Rev. Phys. 2019, 1, 58–71. [Google Scholar]
- Albert, R.; Jeong, H.; Barabási, A.L. Error and attack tolerance in complex networks. Nature 2000, 406, 6794. [Google Scholar] [CrossRef] [PubMed]
- Holme, P.; Kim, B.J.; Yoon, C.N.; Han, S.K. Attack vulnerability of complex networks. Phys. Rev. E 2002, 65, 056109. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.X.; Hill, D.J. Attack vulnerability of complex communication networks. IEEE Trans. Circuits Syst. II Exp. Briefs 2008, 55, 65–69. [Google Scholar] [CrossRef]
- Fu, C.; Wang, Y.; Wang, X.; Gao, Y. Multi-node attack strategy of complex networks due to cascading breakdown. Chaos Solitons Fract. 2018, 106, 61–66. [Google Scholar]
- Motter, A.E.; Lai, Y.C. Cascade-based attacks on complex networks. Phys. Rev. E 2002, 66, 065102. [Google Scholar] [CrossRef]
- Zheng, J.F.; Gao, Z.Y.; Zhao, X.M. Modeling cascading failures in congested complex networks. Physica A 2007, 385, 700–706. [Google Scholar] [CrossRef]
- Chu, C.; Lu, H.H. Complex networks theory for modern smart grid applications: A survey. IEEE J. Emerg. Sel. Top. Circuits Syst. 2017, 7, 177–191. [Google Scholar] [CrossRef]
- Zhang, Y.; Arenas, A.; Yaǧan, O. Cascading failures in interdependent systems under a flow redistribution model. Phys. Rev. E 2018, 97, 022307. [Google Scholar] [CrossRef]
- Schäfer, B.; Witthaut, D.; Timme, M.; Latora, V. Dynamically induced cascading failures in power grids. Nat. Commun. 2018, 9, 1975. [Google Scholar] [CrossRef] [PubMed]
- Ozel, O.; Sinopoli, B.; Yaǧan, O. Uniform redundancy allocation maximizes the robustness of flow networks against cascading failures. Phys. Rev. E 2018, 98, 042306. [Google Scholar] [CrossRef]
- Dey, P.; Mehra, R.; Kazi, F.; Wagh, S.; Singh, N.M. Impact of topology on the propagation of cascading failure in power Grid. IEEE Trans. Smart Grid 2016, 7, 1970–1978. [Google Scholar] [CrossRef]
- Tu, H.; Xia, Y.X.; Iu, H.H.; Chen, X. Optimal robustness in power grid from a network science perspective. IEEE Trans. Circuits Syst. II Exp. Briefs 2019, 66, 126–130. [Google Scholar] [CrossRef]
- Wang, J.W.; Jiang, C.; Cheng, J.F. Robustness of Internet under targeted attack: A cascading failure perspective. J. Netw. Comput. Appl. 2014, 40, 97–104. [Google Scholar] [CrossRef]
- Hong, S.; Wang, B.Q.; Ma, X.M.; Wang, J.H.; Zhao, T.D. Cascading failure analysis and restoration strategy in an interdependent network. J. Phys. A Math. Theor. 2015, 48, 485101. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, D.; Zhan, C.J.; Tse, C.K. Effects of cyber coupling on cascading failures in power systems. IEEE J. Emerg. Sel. Top. Circuits Syst. 2017, 7, 228–238. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, J.J.; Xia, Y.X.; Zhang, X. Robustness of interdependent power grids and communication Networks: A Complex Network Perspective. IEEE Trans. Circuits Syst. II Exp. Briefs 2018, 65, 115–119. [Google Scholar] [CrossRef]
- Min, B.; Zheng, M. Correlated network of networks enhances robustness against catastrophic failures. PLoS ONE 2018, 13, e0195539. [Google Scholar] [CrossRef]
- Chen, Z.; Du, W.B.; Cao, X.B.; Zhou, X.L. Cascading failure of interdependent networks with different coupling preference under targeted attack. Chaos Solitons Fract. 2015, 80, 7–12. [Google Scholar] [CrossRef]
- Babaei, M.; Ghassemieh, H.; Jalili, M. Cascading failure tolerance of modular small-world networks. IEEE Trans. Circuits Syst. II Exp. Briefs 2011, 58, 527–531. [Google Scholar] [CrossRef]
- Wu, J.J.; Gao, Z.Y.; Sun, H.J. Cascade and breakdown in scale-free networks with community structure. Phys. Rev. E 2006, 74, 066111. [Google Scholar] [CrossRef]
- Ren, W.; Wu, J.; Zhang, X.; Lai, R.; Chen, L. A stochastic model of cascading failure dynamics in communication Networks. IEEE Trans. Circuits Syst. II Exp. Briefs 2018, 65, 632–636. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, J. Robustness of scale-free networks with various parameter against cascading failures. Physica A 2018, 492, 628–638. [Google Scholar] [CrossRef]
- Zheng, J.F.; Gao, Z.Y.; Zhao, X.M. Clustering and congestion effects on cascading failures of scale-free networks. Eur. Lett. 2007, 79, 58002. [Google Scholar] [CrossRef]
- Ghanbari, R.; Jalili, M.; Yu, X. Correlation of cascade failures and centrality measures in complex networks. Future Gener. Comp. Syst. 2018, 83, 390–400. [Google Scholar] [CrossRef]
- La, R. Influence of clustering on cascading failures in interdependent systems. IEEE Trans. Netw. Sci. Eng. 2018, 2, 2805720. [Google Scholar] [CrossRef]
- Sun, S.W.; Wu, Y.F.; Ma, Y.L.; Wang, L.; Gao, Z.K.; Xia, C.Y. Impact of degree heterogeneity on attack vulnerability of interdependent networks. Sci. Rep. 2016, 6, 32983. [Google Scholar] [CrossRef]
- Maslov, S. Specificity and stability in topology of protein networks. Science 2002, 296, 910–913. [Google Scholar] [CrossRef]
- Orsini, C.; Dankulov, M.M.; Colomer-de-Simón, P.; Jamakovic, A.; Mahadevan, P.; Vahdat, A.; Bassler, K.E.; Toroczkai, Z.; Boguná, M.; Caldarelli, G.; et al. Quantifying randomness in real networks. Nat. Commun. 2015, 6, 8627. [Google Scholar] [CrossRef]
- Shang, K.K.; Small, M.; Xu, X.K.; Wen, W.S. The role of direct links for link prediction in evolving networks. Europhys. Lett. 2017, 117, 28002. [Google Scholar] [CrossRef]
- Liu, B.; Xu, S.; Li, T.; Xiao, J.; Xu, X.K. Quantifying the effects of topology and weight for link prediction in weighted complex Networks. Entropy 2018, 20, 363–367. [Google Scholar] [CrossRef]
- Cui, W.K.; Shang, K.K.; Zhang, Y.J.; Xiao, J.; Xu, X.K. Constructing null networks for community detection in complex networks. Eur. Phys. J. B 2018, 91, 145–153. [Google Scholar] [CrossRef]
- Mahadevan, P.; Krioukov, D.; Fall, K.; Vahdat, A. Systematic topology analysis and generation using degree correlations. ACM SIGCOMM Comput. Commun. Rev. 2006, 36, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Mahadevan, P.; Hubble, C.; Krioukov, D. Orbis: Rescaling degree correlations to generate annotated Internet topologies. ACM SIGCOMM Comput. Commun. Rev. 2007, 37, 325–336. [Google Scholar] [CrossRef]
- Zhou, S.; Mondragon, R.J. Structural constraints in complex networks. New J. Phys. 2007, 9, 173. [Google Scholar] [CrossRef]
- Xu, X.K.; Zhang, J.; Sun, J.; Small, M. Revising the simple measures of assortativity in complex networks. Phys. Rev. E 2009, 80, 56106. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.K.; Zhang, J.; Small, M. Rich-club connectivity dominates assortativity and transitivity of complex networks. Phys. Rev. E 2010, 82, 046117. [Google Scholar] [CrossRef] [Green Version]
- Leskovec, J. Stanford Network Analysis Project. 2018. Available online: http://snap.standford.edu/data/as.html (accessed on 15 November 2019).
- Barabási, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [Green Version]
Network | N | <k> | p(k) | γ | r | c |
---|---|---|---|---|---|---|
Origin | 3015 | 3.42 | Power-law | 2.5 | −0.23 | 0.18 |
0K | 3015 | 3.42 | Poisson | − | −0.008 | 0.0009 |
1K | 3015 | 3.42 | Power-law | 2.5 | −0.22 | 0.10 |
2K | 3015 | 3.42 | Power-law | 2.5 | −0.23 | 0.12 |
3K | 3015 | 3.42 | Power-law | 2.5 | −0.23 | 0.18 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, L.; Liu, S.-Y.; Yang, Q.; Xu, X.-K. Uncovering the Dependence of Cascading Failures on Network Topology by Constructing Null Models. Entropy 2019, 21, 1119. https://doi.org/10.3390/e21111119
Ding L, Liu S-Y, Yang Q, Xu X-K. Uncovering the Dependence of Cascading Failures on Network Topology by Constructing Null Models. Entropy. 2019; 21(11):1119. https://doi.org/10.3390/e21111119
Chicago/Turabian StyleDing, Lin, Si-Yuan Liu, Quan Yang, and Xiao-Ke Xu. 2019. "Uncovering the Dependence of Cascading Failures on Network Topology by Constructing Null Models" Entropy 21, no. 11: 1119. https://doi.org/10.3390/e21111119
APA StyleDing, L., Liu, S. -Y., Yang, Q., & Xu, X. -K. (2019). Uncovering the Dependence of Cascading Failures on Network Topology by Constructing Null Models. Entropy, 21(11), 1119. https://doi.org/10.3390/e21111119