Application of the Nucleation Theorem to Crystallization of Liquids: Some General Theoretical Results
Abstract
:1. Introduction
2. Nucleation Theorem: Analysis in Terms of Classical Nucleation Theory
2.1. Basic Equations and Results
2.2. Some Alternative Forms of the Nucleation Theorem
2.3. Comparison with the Approach Employed by Kashchiev
3. Thermodynamics of Cluster Formation: Beyond the Classical Gibbs’ Approach
3.1. One Main Deficiency of Classical Nucleation Theory
3.2. Basic Equations and Results
4. Results and Discussion
Funding
Conflicts of Interest
References
- Christian, J.W. The Theory of Transformations in Metals and Alloys; Pergamon Press: Oxford, UK, 1981. [Google Scholar]
- Skripov, V.P.; Koverda, V.P. Spontaneous Crystallization of Undercooled Liquids; Nauka: Moscow, Russia, 1984. (In Russian) [Google Scholar]
- Kelton, K.F.; Greer, A.L. Nucleation in Condensed Matter: Applications in Materials and Biology; Pergamon: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Gutzow, I.S.; Schmelzer, J.W.P. The Vitreous State: Thermodynamics, Structure, Rheology, and Crystallization, 2nd ed.; (First Edition, 1995); Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Herlach, D.; Galenko, P.; Holland-Moritz, D. Metastable Solids from Undercooled Melts; Cahn, R.W., Ed.; Pergamon Materials Series; Elsevier: Amsterdam, The Netherlands, 2007; Volume 10. [Google Scholar]
- Debenedetti, P.G. Metastable liquids: Concepts and Principles; Princeton University Press: Princeton, NJ, USA, 1996. [Google Scholar]
- Fokin, V.M.; Yuritsyn, N.S.; Zanotto, E.D.; Schmelzer, J.W.P. Homogeneous crystal nucleation in silicate glasses: A 40 years perspective. J. Non-Cryst. Solids 2006, 352, 2681–2714. [Google Scholar] [CrossRef]
- Schmelzer, J.W.P. (Ed.) Glass: Selected Properties and Crystallization; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2014. [Google Scholar]
- Komatsu, T. Design and control of crystallization in oxide glasses. J. Non-Cryst. Solids 2015, 428, 156–175. [Google Scholar] [CrossRef]
- Farkas, L. Keimbildungsgeschwindigkeit in übersättigten Dämpfen (English Translation: Nucleation rate in supersaturated vapors). Z. Phys. Chem. 1927, 125, 236–242. [Google Scholar]
- Kaischew, R.; Stranski, I.N. Zur kinetischen Ableitung der Keimbildungsgeschwindigkeit (English Translation: On the Kinetic Derivation of the Nucleation Rate). Z. Phys. Chem. 1934, B 26, 317–326. [Google Scholar]
- Becker, R.; Döring, W. Kinetische Behandlung der Keimbildung in übersättigten Dämpfen (English Translation: Kinetic Treatment of Nucleation in Supersaturated Vapors). Ann. Phys. 1935, 24, 719–752. [Google Scholar] [CrossRef]
- Volmer, M. Kinetik der Phasenbildung (English Translation: Kinetics of Phase Formation); Th. Steinkopff: Dresden, Germany, 1939. [Google Scholar]
- Frenkel, Y.I. The Kinetic Theory of Liquids; Oxford University Press: Oxford, UK, 1946. [Google Scholar]
- Turnbull, D.; Fisher, J.C. Rate of Nucleation in Condensed Systems. J. Chem. Phys. 1949, 17, 71–73. [Google Scholar] [CrossRef]
- Gibbs, J.W. On the Equilibrium of Heterogeneous Substances. Trans. Connect. Acad. Sci. 1879, 3, 108, 343. [Google Scholar] [CrossRef]
- Gibbs, J.W. The Collected Works. In Thermodynamics; Longmans & Green: New York, NY, USA; London, UK; Toronto, ON, Canada, 1928; Volume 1. [Google Scholar]
- Schmelzer, J.W.P.; Abyzov, A.S.; Ferreira, E.B.; Fokin, V.M. Curvature dependence of the surface tension and crystal nucleation in liquids. Int. J. Appl. Glass Sci. 2019, 10, 57–60. [Google Scholar] [CrossRef]
- Schmelzer, J.W.P.; Abyzov, A.S.; Baidakov, V.G. Entropy and the Tolman Parameter in Nucleation Theory. Entropy 2019, 21, 670. [Google Scholar] [CrossRef]
- Ulbricht, H.; Schmelzer, J.W.P.; Mahnke, R.; Schweitzer, F. Thermodynamics of Finite Systems and the Kinetics of First-Order Phase Transitions. In Teubner-Texte zur Physik; Teubner-Verlag: Leipzig, Germany, 1988; Volume 17. [Google Scholar]
- Schmelzer, J.W.P.; Boltachev, G.S.; Baidakov, V.G. Is Gibbs’ thermodynamic theory of heterogeneous systems really perfect? In Nucleation Theory and Applications; Schmelzer, J.W.P., Ed.; WILEY-VCH: Berlin, Germany; Weinheim, Germany, 2005; pp. 418–446. [Google Scholar]
- Schmelzer, J.W.P.; Boltachev, G.S.; Baidakov, V.G. Classical and generalized Gibbs approaches and the work of critical cluster formation in nucleation theory. J. Chem. Phys. 2006, 124, 194503. [Google Scholar] [CrossRef]
- Schmelzer, J.W.P.; Abyzov, A.S. Crystallization of glass-forming melts: New answers to old questions. J. Non-Cryst. Solids 2018, 501, 11–20. [Google Scholar] [CrossRef]
- Reguera, D.; Reiss, H. Nucleation in confined ideal binary mixtures: The Renninger–Wilemski problem revisited. J. Chem. Phys. 2003, 119, 1533–1546. [Google Scholar] [CrossRef]
- Ono, S.; Kondo, S. Molecular theory of surface tension in liquids. In Handbuch der Physik (Encyclopedia of Physics); Flügge, S., Ed.; Springer: Berlin/Heidelberg, Germany; Göttingen, Germany, 1960; Volume 10, pp. 134–280. [Google Scholar]
- Renninger, R.G.; Hiller, F.C.; Bone, R.C. Comment on “Self-nucleation in the sulfuric acid-water system”. J. Chem. Phys. 1981, 75, 1584–1585. [Google Scholar] [CrossRef]
- Wilemski, G. Composition of the critical nucleus in multi-component vapor nucleation. J. Chem. Phys. 1984, 80, 1370–1372. [Google Scholar] [CrossRef]
- Schmelzer, J.W.P. Curvature Dependent Surface Tension and Nucleation Theory. In Nucleation Theory and Applications; Schmelzer, J.W.P., Röpke, G., Priezzhev, V.B., Eds.; Joint Institute for Nuclear Research Publishing House: Dubna, Russia, 1999; Chapter 9; pp. 268–289. ISBN 5-851165-539-9. [Google Scholar]
- Schmelzer, J.W.P.; Baidakov, V.G.; Boltachev, G.S. Kinetics of boiling in binary liquid-gas solutions: Comparison of different approaches. J. Chem. Phys. 2003, 119, 6166–6183. [Google Scholar] [CrossRef]
- Schmelzer, J.W.P.; Abyzov, A.S. Crystallization of glass-forming liquids: Thermodynamic driving force. J. Non-Cryst. Solids 2016, 449, 41–49. [Google Scholar] [CrossRef]
- Schmelzer, J.W.P. On the determination of the kinetic pre-factor in classical nucleation theory. J. Non-Cryst. Solids 2010, 356, 2901–2907. [Google Scholar] [CrossRef]
- Fokin, V.M.; Abyzov, A.S.; Zanotto, E.D.; Cassar, D.R.; Rodrigues, A.M.; Schmelzer, J.W.P. Crystal nucleation in glass-forming liquids: Variation of the size of the structural units with temperature. J. Non-Cryst. Solids 2016, 447, 35–44. [Google Scholar] [CrossRef]
- Slezov, V.V. Kinetics of First-Order Phase Transitions; Wiley-VCH: Berlin, Germany; Weinheim, Germany, 2009. [Google Scholar]
- Hill, T.L. Thermodynamics of Small Systems. J. Chem. Phys. 1962, 36, 3182–3197. [Google Scholar] [CrossRef]
- Nielsen, E. Kinetics of Precipitation; Pergamon: Oxford, UK, 1964. [Google Scholar]
- Kashchiev, D. On the relation between nucleation work, nucleus size, and nucleation rate. J. Chem. Phys. 1982, 76, 5098–5102. [Google Scholar] [CrossRef]
- Anisimov, M.P.; Vershinin, S.N. Spontaneous nucleation rates, sizes and compositions of criticval nuclei in many-component supersaturated vapor. In Atmospheric Aerosols and Nucleation; Wagner, P.E., Vali, G., Eds.; Springer: Berlin, Germany, 1988; pp. 393–396. [Google Scholar]
- Baidakov, V.G.; Kaverin, A.M.; Sulla, I.I. Accessible superheating of liquid ethane. Teplofizika Vysokikh Temperatur 1989, 27, 410–412. (In Russian) [Google Scholar]
- Viisanen, Y.; Strey, R.; Reiss, H. Homogeneous nucleation rates for water. J. Chem. Phys. 1993, 99, 4680–4692. [Google Scholar] [CrossRef]
- Oxtoby, D.; Kashchiev, D. A general relation between the nucleation work and the size of the nucleus in multicomponent nucleation. J. Chem. Phys. 1994, 100, 7665–7671. [Google Scholar] [CrossRef]
- Bowles, R.K.; McGraw, R.; Schaaf, P.; Senger, B.; Voegel, J.-C.; Reiss, H. A molecular based derivation of the nucleation theorem. J. Chem. Phys. 2000, 113, 4524–4532. [Google Scholar] [CrossRef]
- Schmelzer, J.W.P. Comments on the nucleation theorem. J. Colloid Interface Sci. 2001, 242, 354–372. [Google Scholar] [CrossRef]
- Schmelzer, J.W.P. Some additional comments on the nucleation theorem. Russ. J. Phys. Chem. 2003, 77 (Suppl. 1), S143–S145. [Google Scholar]
- Kashchiev, D. Forms and applications of the nucleation theorem. J. Chem. Phys. 2006, 125, 014502. [Google Scholar] [CrossRef]
- Wilemski, G. Volumes of critical bubbles from the nucleation theorem. J. Chem. Phys. 2006, 125, 114507. [Google Scholar] [CrossRef]
- Baidakov, V.G.; Tipeev, A.O.; Bobrov, K.S.; Ionov, G.V. Crystal nucleation rate isotherms in Lennard-Jones liquids. J. Chem. Phys. 2010, 132, 234505. [Google Scholar] [CrossRef]
- Vehkamäki, H.; McGrath, M.J.; Kurten, T.; Julin, J.; Lehtinen, K.E.J.; Kulmala, M. Rethinking the application of the first nucleation theorem to particle formation. J. Chem. Phys. 2012, 136, 094107. [Google Scholar] [CrossRef]
- Malila, J.; McGraw, R.; Laaksonen, A.; Lehtinen, K.E.J. Communication: Kinetics of scavenging of small, nucleating clusters: First nucleation theorem and sum rules. J. Chem. Phys. 2015, 142, 011102. [Google Scholar] [CrossRef]
- Perepezko, J.H.; Wilde, G. Melt undercooling and nucleation kinetics. Curr. Opin. Solid State Mater. Sci. 2016, 20, 3–12. [Google Scholar] [CrossRef]
- Gao, Y.; Guo, B.; Xu, J. Critical Size of Secondary Nuclei Determined via the Nucleation Theorem Reveals Selective Nucleation in Three-Component Co-Crystals. Entropy 2019, 21, 1032. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, S.; Shi, J.; Guo, B.; Xu, J. Study of the Crystal Growth Mechanism and Critical Secondary Nucleus Size of Poly(ethylene oxide)/Urea Inclusion Compound. Cryst. Growth Des. 2019, 19, 3834–3842. [Google Scholar] [CrossRef]
- Holton, G. Werner Heisenberg and Albert Einstein. Phys. Today 2000, 53, 38–42. [Google Scholar] [CrossRef] [Green Version]
- Tolman, R. Consideration of the Gibbs Theory of Surface Tension. J. Chem. Phys. 1948, 16, 758–774. [Google Scholar] [CrossRef] [Green Version]
- Tolman, R. The Effect of Droplet Size on Surface Tension. J. Chem. Phys. 1949, 17, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Fokin, V.M.; Zanotto, E.D. Crystal nucleation in silicate glasses: The temperature and size dependence of crystal-liquid surface energy. J. Non-Cryst. Solids 2000, 265, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Abyzov, A.S.; Fokin, V.M.; Zanotto, D.; Rodrigues, A.M.; Schmelzer, J.W.P. The effect of elastic stresses on the thermodynamic barrier for crystal nucleation. J. Non-Cryst. Solids 2016, 432, 325–333. [Google Scholar] [CrossRef]
- Schmelzer, J.W.P.; Abyzov, A.S. Crystallization of glass-forming liquids: Specific surface energy. J. Chem. Phys. 2016, 145, 064512. [Google Scholar] [CrossRef]
- Schmelzer, J.W.P.; Abyzov, A.S.; Fokin, V.M. Thermodynamic Aspects of Pressure-Induced Crystallization: Kauzmann Pressure. Int. J. Appl. Glass Sci. 2016, 7, 474–485. [Google Scholar] [CrossRef]
- Hellmuth, O.; Schmelzer, J.W.P.; Feistel, R. Ice-crystal nucleation in water: Thermodynamic driving force and surface tension. Entropy 2019. submitted. [Google Scholar]
- Marcolli, C. Technical note: Fundamental aspects of ice nucleation via pore condensation and freezing including Laplace pressure and growth into macroscopic ice. Atmos. Chem. Phys. 2019. [Google Scholar] [CrossRef]
- Kubo, R. Thermodynamics; North-Holland Publishing Company: Amsterdam, The Netherlands, 1968. [Google Scholar]
- Nishioka, K.; Kusaka, I. Thermodynamic formulas of liquid phase nucleation from vapor in multicomponent systems. J. Chem. Phys. 1992, 96, 5370–5376. [Google Scholar] [CrossRef]
- Debenedetti, P.G.; Reiss, H. Reversible work of formation of an embryo of a new phase within a uniform macroscopic mother phase. J. Chem. Phys. 1998, 108, 5498–5505. [Google Scholar] [CrossRef] [Green Version]
- John von Neumann, Quotes. Available online: https://www.goodreads.com/author/quotes/205578.John_von_Neuman (accessed on 15 November 2019).
- Cahn, J.W. Reflections on Diffusive Interfaces and Spinodal Decomposition. In The Selected Works of J. W. Cahn; Carter, W.C., Johnson, W.C., Eds.; The Minerals, Metals, and Materials Society: Warrendale, PA, USA, 1998; pp. 1–8. [Google Scholar]
- Schmelzer, J.W.P.; Schmelzer, J., Jr.; Gutzow, I.S. Reconciling Gibbs and van der Waals: A new approach to nucleation theory. J. Chem. Phys. 2000, 112, 3820–3831. [Google Scholar] [CrossRef]
- Schmelzer, J.W.P.; Abyzov, A.S. How Do Crystals Nucleate and Grow: Ostwalds Rule of Stages and Beyond. In Thermal Physics and Thermal Analysis, Hot Topics in Thermal Analysis and Calorimetry; Sestak, J., Hubik, P., Mares, J.J., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 11, pp. 195–211. [Google Scholar]
- Abyzov, A.S.; Davydov, L.N.; Schmelzer, J.W.P. Heterogeneous Nucleation in Solutions on Rough Solid Surfaces: Generalized Gibbs Approach. Entropy 2019, 21, 782. [Google Scholar] [CrossRef] [Green Version]
- Hillert, M. A Theory of Nucleation of Solid Metallic Solutions. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1956. [Google Scholar]
- Cahn, J.W.; Hilliard, J.E. Free energy of a non-uniform system: I. Interfacial free energy. J. Chem. Phys. 1958, 28, 258–267. [Google Scholar] [CrossRef]
- Cahn, J.W.; Hilliard, J.E. Nucleation in a Two-Component Incompressible Fluid. J. Chem. Phys. 1959, 31, 688–699. [Google Scholar] [CrossRef]
- Van der Waals, J.D.; Kohnstamm, P. Lehrbuch der Thermodynamik (English Translation: Textbook of Thermodynamics); Johann Ambrosius Barth: Leipzig, Germany; Amsterdam, The Netherlands, 1908. [Google Scholar]
- Rowlinson, J.S.; van der Waals, J.D. The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. J. Stat. Phys. 1979, 20, 197–200. [Google Scholar] [CrossRef]
- Zanotto, E.D.; James, P.F. Experimental tests of the classical nucleation theory for glasses. J. Non-Cryst. Solids 1985, 74, 373–394. [Google Scholar] [CrossRef]
- Granasy, L.; James, P.F. Nucleation and growth in cluster dynamics: A quantitative test of the classical kinetic approach. J. Chem. Phys. 2000, 113, 9810–9821. [Google Scholar] [CrossRef]
- Fokin, V.M.; Zanotto, E.D.; Schmelzer, J.W.P. Method to estimate crystal/liquid surface energy by dissolution of subcritical nuclei. J. Non-Cryst. Solids 2000, 278, 24–34. [Google Scholar] [CrossRef]
- Fokin, V.M.; Potapov, O.V.; Zanotto, E.D.; Spiandorello, F.M.; Ugolkov, V.L.; Pevzner, B.Z. Mutant crystals in Na2O·2CaO·3SiO2-glasses. J. Non-Cryst. Solids 2003, 331, 240–253. [Google Scholar] [CrossRef]
- Schmelzer, J.W.P.; Gokhman, A.R.; Fokin, V.M. On the Dynamics of First-Order Phase Transitions in Multi-Component Systems. J. Colloid Interface Sci. 2004, 272, 109–133. [Google Scholar] [CrossRef]
- Tatchev, D.; Hoell, A.; Kranold, R.; Armyanov, S. Size distribution and composition of magnetic precipitates in amorphous Ni-P Alloys. Physica 2005, B 369, 8–19. [Google Scholar] [CrossRef]
- Tatchev, D.; Goerigk, G.; Valova, E.; Dille, J.; Kranold, R.; Armyanov, S.; Delplancke, J.-L. Investigation of the primary crystallization of Ni-17 at.% P alloy by ASAXS. J. Appl. Crystallogr. 2005, 38, 787–794. [Google Scholar] [CrossRef] [Green Version]
- Roskosz, M.; Toplis, M.J.; Richet, P. Kinetic vs. Thermodynamic Control of Crystal Nucleation and Growth in Molten Silicates. J. Non-Cryst. Solids 2005, 352, 180–184. [Google Scholar] [CrossRef]
- Fokin, V.M.; Zanotto, E.D. Continuous compositional changes of crystal and liquid during crystallization of a sodium calcium silicate glass. J. Non-Cryst. Solids 2007, 353, 2459–2468. [Google Scholar] [CrossRef]
- Schmelzer, J.W.P.; Abyzov, A.S. Generalized Gibbs’ Approach to the Thermodynamics of Heterogeneous Systems and the Kinetics of First-Order Phase Transitions. J. Eng. Thermophys. 2007, 16, 119–129. [Google Scholar] [CrossRef]
- Schmelzer, J.W.P.; Fokin, V.M.; Abyzov, A.S.; Zanotto, E.D.; Gutzow, I. How Do Crystals Form and Grow in Glass-Forming Liquids: Ostwalds Rule of Stages and Beyond. Int. J. Appl. Glass Sci. 2010, 1, 16–26. [Google Scholar] [CrossRef]
- Schmelzer, J.W.P.; Abyzov, A.S.; Fokin, V.M. Crystallization of glass: What we know, what we need to know. Int. J. Appl. Glass Sci. 2016, 7, 253–261. [Google Scholar] [CrossRef]
- Johari, G.P.; Schmelzer, J.W.P. Crystal Nucleation and Growth in Glass-forming Systems: Some New Results and Open Problems. In Glass: Selected Properties and Crystallization; Schmelzer, J.W.P., Ed.; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2014; pp. 521–585. [Google Scholar]
- Defay, R.; Prigogine, I.; Bellemans, R.; Everett, D.H. Surface Tension and Adsorption; Longmans, Green & Co.: London, UK, 1966. [Google Scholar]
- Prigogine, I.; Bellemans, A. Statistical Mechanics of Surface Tension and Adsorption. In Adhesion and Adsorption of Polymers Part A; Lee, L.H., Ed.; Plenum Press: New York, NY, USA, 1980. [Google Scholar]
- Rowlinson, J.S.; Widom, B. Molecular Theory of Capillarity; Clarendon Press: Oxford, UK, 1982. [Google Scholar]
- Boltachev, G.S.; Schmelzer, J.W.P. On the definition of temperature and its fluctuations in small systems. J. Chem. Phys. 2010, 133, 134509. [Google Scholar] [CrossRef]
- Schmelzer, J.W.P.; Boltachev, G.S.; Abyzov, A.S. On the temperature of the critical clusters in nucleation theory. J. Chem. Phys. 2013, 139, 034702. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmelzer, J.W.P. Application of the Nucleation Theorem to Crystallization of Liquids: Some General Theoretical Results. Entropy 2019, 21, 1147. https://doi.org/10.3390/e21121147
Schmelzer JWP. Application of the Nucleation Theorem to Crystallization of Liquids: Some General Theoretical Results. Entropy. 2019; 21(12):1147. https://doi.org/10.3390/e21121147
Chicago/Turabian StyleSchmelzer, Jürn W. P. 2019. "Application of the Nucleation Theorem to Crystallization of Liquids: Some General Theoretical Results" Entropy 21, no. 12: 1147. https://doi.org/10.3390/e21121147
APA StyleSchmelzer, J. W. P. (2019). Application of the Nucleation Theorem to Crystallization of Liquids: Some General Theoretical Results. Entropy, 21(12), 1147. https://doi.org/10.3390/e21121147