Non-Classical Correlations in n-Cycle Setting
Abstract
:1. Introduction
- The KS boxes were motivated by KCBS non-contextuality inequality [18].
- The KCBS non-contextuality inequality belongs to the same family of inequalities as the CHSH inequality [9].
- The maximum value of CHSH inequality for no-signalling theories is provided by PR boxes [16].
- The PR box can be simulated by KS box for [18].
Paper Structure
2. Simulating KS Box
- 1.
- if , and
- 2.
- if
3. Analysing n-Cycle Non-Contextuality Inequalities
3.1. KCBS Inequality
- and are compatible and
- and are exclusive.
3.2. CHSH Inequality
3.3. Analysing the Generalised KCBS Inequality
3.4. Analysing Chained Bell Inequalities
4. Simulating PR Box
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Bell, J.S. On the Einstein Podolsky Rosen paradox. Phys. Phys. Fizika 1964, 1, 195–200. [Google Scholar] [CrossRef]
- Pironio, S.; Acín, A.; Massar, S.; de La Giroday, A.B.; Matsukevich, D.N.; Maunz, P.; Olmschenk, S.; Hayes, D.; Luo, L.; Manning, T.A.; et al. Random numbers certified by Bell’s theorem. Nature 2010, 464, 1021. [Google Scholar] [CrossRef]
- Popescu, S.; Rohrlich, D. Generic quantum nonlocality. Phys. Lett. A 1992, 166, 293–297. [Google Scholar] [CrossRef]
- Mayers, D.; Yao, A. Self testing quantum apparatus. arXiv, 2003; arXiv:quant-ph/0307205. [Google Scholar]
- Summers, S.J.; Werner, R. Bell’s inequalities and quantum field theory. I. General setting. J. Math. Phys. 1987, 28, 2440–2447. [Google Scholar] [CrossRef]
- Tsirel’son, B.S. Quantum analogues of the Bell inequalities. The case of two spatially separated domains. J. Soviet Math. 1987, 36, 557–570. [Google Scholar] [CrossRef]
- Cleve, R.; Buhrman, H. Substituting quantum entanglement for communication. Phys. Rev. A 1997, 56, 1201. [Google Scholar] [CrossRef]
- Cabello, A.; Severini, S.; Winter, A. Graph-theoretic approach to quantum correlations. Phys. Rev. Lett. 2014, 112, 040401. [Google Scholar] [CrossRef]
- Amaral, B.; Cunha, M.T. On Graph Approaches to Contextuality and Their Role in Quantum Theory; Springer: Berlin, Germany, 2018. [Google Scholar]
- Kochen, S.; Specker, E.P. The problem of hidden variables in quantum mechanics. In The Logico-Algebraic Approach to Quantum Mechanics; Springer: Berlin, Germany, 1975; pp. 293–328. [Google Scholar]
- Singh, J.; Bharti, K.; Arvind. Quantum key distribution protocol based on contextuality monogamy. Phys. Rev. A 2017, 95, 062333. [Google Scholar] [CrossRef]
- Cabello, A.; D’Ambrosio, V.; Nagali, E.; Sciarrino, F. Hybrid ququart-encoded quantum cryptography protected by Kochen-Specker contextuality. Phys. Rev. A 2011, 84, 030302. [Google Scholar] [CrossRef]
- Bharti, K.; Ray, M.; Varvitsiotis, A.; Warsi, N.A.; Cabello, A.; Kwek, L.C. Robust self-testing of quantum systems via noncontextuality inequalities. arXiv, 2018; arXiv:1812.07265. [Google Scholar]
- Raussendorf, R. Contextuality in measurement-based quantum computation. Phys. Rev. A 2013, 88, 022322. [Google Scholar] [CrossRef]
- Howard, M.; Wallman, J.; Veitch, V.; Emerson, J. Contextuality supplies the ’magic’ for quantum computation. Nature 2014, 510. [Google Scholar] [CrossRef] [PubMed]
- Popescu, S.; Rohrlich, D. Quantum nonlocality as an axiom. Found. Phys. 1994, 24, 379–385. [Google Scholar] [CrossRef]
- Pawłowski, M.; Paterek, T.; Kaszlikowski, D.; Scarani, V.; Winter, A.; Żukowski, M. Information causality as a physical principle. Nature 2009, 461, 1101. [Google Scholar] [CrossRef] [PubMed]
- Bub, J.; Stairs, A. Contextuality and nonlocality in ‘no signaling’theories. Found. Phys. 2009, 39, 690–711. [Google Scholar] [CrossRef]
- Popescu, S. Nonlocality beyond quantum mechanics. Nat. Phys. 2014, 10, 264. [Google Scholar]
- van Dam, W. Implausible consequences of superstrong nonlocality. Nat. Comput. 2013, 12, 9–12. [Google Scholar]
- Araújo, M.; Quintino, M.T.; Budroni, C.; Cunha, M.T.; Cabello, A. All noncontextuality inequalities for then-cycle scenario. Phys. Rev. A 2013, 88. [Google Scholar] [CrossRef]
- Klyachko, A.A.; Can, M.A.; Binicioğlu, S.; Shumovsky, A.S. Simple Test for Hidden Variables in Spin-1 Systems. Phys. Rev. Lett. 2008, 101, 020403. [Google Scholar] [CrossRef]
- Liang, Y.C.; Spekkens, R.W.; Wiseman, H.M. Specker’s parable of the overprotective seer: A road to contextuality, nonlocality and complementarity. Phys. Rep. 2011, 506, 1–39. [Google Scholar] [CrossRef]
- Clauser, J.F.; Horne, M.A.; Shimony, A.; Holt, R.A. Proposed Experiment to Test Local Hidden-Variable Theories. Phys. Rev. Lett. 1969, 23, 880–884. [Google Scholar] [CrossRef]
- Braunstein, S.L.; Caves, C.M. Wringing out better Bell inequalities. Ann. Phys. 1990, 202, 22–56. [Google Scholar] [CrossRef]
- Arora, A.S.; Asadian, A. Proposal for a macroscopic test of local realism with phase-space measurements. Phys. Rev. A 2015, 92, 062107. [Google Scholar] [CrossRef]
- Bharti, K.; Arora, A.S.; Kwek, L.C.; Roland, J. A simple proof of uniqueness of the KCBS inequality. arXiv, 2018; arXiv:1811.05294. [Google Scholar]
- Knuth, D.E. The sandwich theorem. Electron. J. Comb. 1994, 1, 1. [Google Scholar]
Dimension | Marginal Probability | Simulation Efficiency |
---|---|---|
5 | 0.4 | 0.92 |
7 | 0.4 | 0.893878 |
9 | 0.4 | 0.881481 |
11 | 0.4 | 0.87438 |
13 | 0.4 | 0.869822 |
15 | 0.4 | 0.866667 |
17 | 0.4 | 0.862976 |
x | 1 | 2 | ⋯ | n | ||||||
---|---|---|---|---|---|---|---|---|---|---|
y | ||||||||||
1 | 0 | p | ⋱ | p | ||||||
0 | p | p | 0 | p | 0 | |||||
2 | p | 0 | ⋱ | p | ||||||
p | 0 | 0 | p | p | 0 | |||||
⋮ | ⋱ | ⋱ | ⋱ | ⋱ | ||||||
n | p | p | ⋱ | 0 | ||||||
p | 0 | p | 0 | 0 | p |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bharti, K.; Ray, M.; Kwek, L.-C. Non-Classical Correlations in n-Cycle Setting. Entropy 2019, 21, 134. https://doi.org/10.3390/e21020134
Bharti K, Ray M, Kwek L-C. Non-Classical Correlations in n-Cycle Setting. Entropy. 2019; 21(2):134. https://doi.org/10.3390/e21020134
Chicago/Turabian StyleBharti, Kishor, Maharshi Ray, and Leong-Chuan Kwek. 2019. "Non-Classical Correlations in n-Cycle Setting" Entropy 21, no. 2: 134. https://doi.org/10.3390/e21020134
APA StyleBharti, K., Ray, M., & Kwek, L. -C. (2019). Non-Classical Correlations in n-Cycle Setting. Entropy, 21(2), 134. https://doi.org/10.3390/e21020134