Dense U-net Based on Patch-Based Learning for Retinal Vessel Segmentation
Abstract
:1. Introduction
2. Method
2.1. Patches Extraction
Algorithm 1. Image patches random extraction strategy |
Input: Source image, ground truth |
Output: Patches_source and patches_ground |
Calculate patches number N_patch_per_image for each image basing on the principle of equal distribution |
for i=1 to N_images |
k=0 |
while k< N_patch_per_image |
generate the central coordinates of patch randomly |
judge the central coordinates of image patch inside FOV |
produce patches_source and patches_ground k=k+1 |
return patches_source and patches_ground |
Algorithm 2. Overlapping-patches sequential reconstruction strategy |
Input: Patch-base prediction result preds, image size img_h, img_w, stride stride_h, strid_w |
Output: Final segmentation result final_avg |
Calculate patches number N_patches_h in height for each image |
Calculate patches number in width N_patches_w for each image Calculate patches number N_patches_img for each image |
for i=1 to N_patches_img |
for h=1 to N_patches_h |
for w=1 to N_patches_w. |
obtain pixel predicted probability full_pro |
obtain pixel predicted frequency full_sum |
Calculate final segmentation result final_avg |
return final segmentation result |
2.2. Dense U-net Architecture
2.2.1. Dense Block
2.2.2. Transition Layer
2.3. Loss Function
2.4. Data Augmentation and Preprocessing
3. Result
3.1. Experiment
3.1.1. Experiment Data
3.1.2. Evaluation Metrics
3.2. Validation of the Proposed Method
3.3. Comparison with U-net
3.4. Comparison with the State-of-the-art Methods
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sohini, R.; Dara, D.K.; Keshab, K.P. Blood Vessel Segmentation of Fundus Images by Major Vessel Extraction and Sub-Image Classification. IEEE J. Biomed. Health Inform. 2015, 19, 1118–1128. [Google Scholar]
- Guariglia, E. Entropy and Fractal Antennas. Entropy 2016, 18, 84. [Google Scholar] [CrossRef]
- Berry, M.V.; Lewis, Z.V. On the Weierstrass-Mandelbrot fractal function. Proc. R. Soc. Lond. Ser. A 1980, 370, 459–484. [Google Scholar] [CrossRef]
- Guariglia, E. Harmonic Sierpinski Gasket and Applications. Entropy 2018, 20, 714. [Google Scholar] [CrossRef]
- Frangi, A.F.; Niessen, W.J.; Vincken, K.I.; Viergever, M.A. Multiscale vessel enhancement filtering. In Proceedings of the Imitational Conference on Medical Image Computing and Computer Assisted Intervention, Cambridge, MA, USA, 11–13 October 1998; Springer: Berlin, Germany, 1998; pp. 130–137. [Google Scholar]
- Sato, Y.; Nakaiima, S.; Atsumi, H.; Koller, T.; Gerig, G.; Yoshida, S.; Kikinis, R. 3D Multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med. Image Anal. 1998, 2, 143–168. [Google Scholar] [CrossRef]
- Jiang, X.Y.; Mojon, D. Adaptive local thresholding by verification based multi-threshold probing with application to vessel detection in retinal images. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 131–137. [Google Scholar] [CrossRef]
- Dashtbozorg, B.; Bekkers, E.; Pluim, J.P.; Duits, R.; TerHaar Romeny, B.M.; Zhang, J. Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores. IEEE Trans. Med. Imaging 2016, 35, 2631–2644. [Google Scholar]
- Azzopardi, G.; Strisciuglio, N.; Vento, M.; Petkov, N. Trainable COSFIRE filters for vessel delineation with application to retinal images. Med. Image Anal. 2015, 19, 46–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Rada, L.; Chen, K.; Harding, S.P.; Zheng, Y. Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans. Med. Imaging 2015, 34, 1797–1807. [Google Scholar] [CrossRef]
- Liang, L.M.; Huang, C.L.; Shi, F.; Wu, J.; Jiang, H.J.; Chen, X.J. Retinal Vessel Segmentation Using Level Set Combined with Shape Priori. Chin. J. Comput. 2018, 41, 1678–1692. [Google Scholar]
- Guido, R.C. Practical and useful tips on discrete wavelet transforms. IEEE Signal Process. Mag. 2015, 32, 162–166. [Google Scholar] [CrossRef]
- Guido, R.C.; Addison, P.S.; Walker, J. Introducing wavelets and time-frequency analysis. IEEE Eng. Med. Biol. Mag. 2009, 28, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.M.; Shen, L.D.; Wang, Y.X.; Zheng, L.Y. Eye fundus vessel segmentation technology based on SVM. Appl. Sci. Technol. 2017, 44, 67–71. [Google Scholar]
- Orlando, J.I.; Prokofyeva, E.; Blaschko, M.B. A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images. IEEE Trans. Biomed. Eng. 2017, 64, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, Y.; Bekkers, E.; Wang, M.L.; Dashtbozorg, B.; Ter Haar Romeny, B.M. Retinal vessel delineation using a brain-inspired wavelet transform and random forest. Pattern Recognit. 2017, 69, 107–123. [Google Scholar] [CrossRef]
- Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1798–1828. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of the International Conference Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; Volume 60, pp. 1097–1105. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3430–3440. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Brancati, N.; Frucci, M.; Gragnaniello, D.; Riccio, D. Retinal Vessels Segmentation Based on a Convolutional Neural Network. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications; Springer: Cham, Switzerland, 2017; pp. 119–126. [Google Scholar]
- Oliveira, A.F.M.; Pereira, S.R.M.; Silva, C.A.B. Retinal Vessel Segmentation based on Fully Convolutional Neural Networks. Expert Syst. Appl. 2018, 112, 229–242. [Google Scholar] [CrossRef]
- Guo, Y.H.; Budak, U.; Vespa, L.J.; Khorasania, E.; Şengür, A. A retinal vessel detection approach using convolution neural network with reinforcement sample learning strategy. Measurement 2018, 125, 586–591. [Google Scholar] [CrossRef]
- Hu, K.; Zhang, Z.Z.; Niu, X.R.; Zhang, Y.; Cao, C.H.; Xiao, F.; Gao, X.P. Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing 2018, 309, 179–191. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4700–4708. [Google Scholar]
- Huang, G.; Chen, D.; Li, T.; Wu, F.; Van der Maaten, L.; Weinberger, K.Q. Multi-scale dense convolutional networks for efficient prediction. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018; pp. 1–14. [Google Scholar]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, Inception-Res Net and the impact of residual connections on learning. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; pp. 4278–4284. [Google Scholar]
- Jégou, S.; Drozdzal, M.; Vazquez, D.; Romero, A.; Bengio, Y. The one hundred layers tiramisu: Fully convolutional DenseNets for semantic segmentation. In Proceedings of the Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 1175–1183. [Google Scholar]
- He, H.; Garcia, E.A. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [Google Scholar] [Green Version]
- Xie, S.N.; Tu, Z.W. Holistically-nested edge detection. In International Journal of Computer Vision; Springer: Cham, Switzerland, 2015; pp. 1–16. [Google Scholar]
- Milletari, F.; Navab, N.; Ahmadi, S.A. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In Proceedings of the Fourth International Conference on 3D Vision, Stanford, CA, USA, 25–28 October 2016; pp. 565–571. [Google Scholar]
- Oliveira, A.; Pereira, S.; Silva, C.A. Augmenting Data When Training a CNN for Retinal Vessel Segmentation: How to Warp? In Proceedings of the IEEE 5th Portuguese Meeting on Bioengineering, Coimbra, Portugal, 16–18 February 2017; pp. 1–4. [Google Scholar]
- Simard, P.Y.; Steinkraus, D.; Platt, J.C. Best practices for convolutional neural networks applied to visual document analysis. In Proceedings of the International Conference on Document Analysis and Recognition, Edinburgh, UK, 6 August 2003; pp. 958–962. [Google Scholar]
- Staal, J.J.; Abramoff, M.D.; Niemeijer, M.; Viergever, M.A.; Van Ginneken, B. Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 2004, 23, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Hoover, A.; Kouznetsova, V.; Goldbaum, M. Locating blood vessels in retinal images by piece-wise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 2000, 19, 203–210. [Google Scholar] [CrossRef] [PubMed]
DRIVE | STARE | |||||||
---|---|---|---|---|---|---|---|---|
Proposed method | Se | Sp | Acc | AUC | Se | Sp | Acc | AUC |
Second human observer | 0.7760 | 0.9724 | 0.9472 | 0.8952 | 0.9384 | 0.9349 | ||
40000 real | 0.7886 | 0.9716 | 0.9483 | 0.9686 | 0.7904 | 0.9716 | 0.9508 | 0.9684 |
40000 real +40000 augmented | 0.7986 | 0.9736 | 0.9511 | 0.9740 | 0.7914 | 0.9722 | 0.9538 | 0.9704 |
DRIVE | STARE | |||||||
---|---|---|---|---|---|---|---|---|
Method | Se | Sp | Acc | AUC | Se | Sp | Acc | AUC |
Second human observer | 0.7760 | 0.9724 | 0.9472 | 0.8952 | 0.9384 | 0.9349 | ||
U-net (dice-loss) | 0.7937 | 0.9747 | 0.9517 | 0.9745 | 0.7882 | 0.9729 | 0.9547 | 0.9740 |
U-net (cross-entropy) | 0.7758 | 0.9755 | 0.9500 | 0.9742 | 0.7838 | 0.9780 | 0.9535 | 0.9673 |
Dense U-net (dice-loss) | 0.7986 | 0.9736 | 0.9511 | 0.9740 | 0.7914 | 0.9722 | 0.9538 | 0.9704 |
Dense U-net (cross-entropy) | 0.7886 | 0.9736 | 0.9483 | 0.9716 | 0.7896 | 0.9734 | 0.9475 | 0.9682 |
DRIVE | STARE | ||||||||
---|---|---|---|---|---|---|---|---|---|
Type | Method | Se | Sp | Acc | AUC | Se | Sp | Acc | AUC |
Second expert observer | 0.7760 | 0.9724 | 0.9472 | 0.8952 | 0.9384 | 0.9349 | |||
Unsupervised | Zhao [7] | 0.7420 | 0.9820 | 0.9540 | 0.8620 | 0.7800 | 0.9780 | 0.9560 | 0.9673 |
Azzopardi [6] | 0.7655 | 0.9704 | 0.9442 | 0.9614 | 0.7716 | 0.9701 | 0.9497 | 0.9563 | |
Zhang [5] | 0.7743 | 0.9725 | 0.9776 | 0.9636 | 0.7791 | 0.9758 | 0.9554 | 0.9748 | |
Supervised | Orlando [10] | 0.7897 | 0.9684 | 0.9454 | 0.9506 | 0.7680 | 0.9738 | 0.9519 | 0.9570 |
Zhang [11] | 0.7861 | 0.9712 | 0.9466 | 0.9703 | 0.7882 | 0.9729 | 0.9547 | 0.9740 | |
Deep learning | Hu [19] | 0.7772 | 0.9793 | 0.9533 | 0.9759 | 0.7543 | 0.9814 | 0.9632 | 0.9751 |
Guo [18] | 0.8990 | 0.9283 | 0.9199 | 0.9652 | |||||
U-net | 0.7937 | 0.9747 | 0.9517 | 0.9745 | 0.7882 | 0.9729 | 0.9547 | 0.9740 | |
Our proposed | 0.7986 | 0.9736 | 0.9511 | 0.9740 | 0.7914 | 0.9722 | 0.9538 | 0.9704 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Zhao, Z.; Ren, Q.; Xu, Y.; Yu, Y. Dense U-net Based on Patch-Based Learning for Retinal Vessel Segmentation. Entropy 2019, 21, 168. https://doi.org/10.3390/e21020168
Wang C, Zhao Z, Ren Q, Xu Y, Yu Y. Dense U-net Based on Patch-Based Learning for Retinal Vessel Segmentation. Entropy. 2019; 21(2):168. https://doi.org/10.3390/e21020168
Chicago/Turabian StyleWang, Chang, Zongya Zhao, Qiongqiong Ren, Yongtao Xu, and Yi Yu. 2019. "Dense U-net Based on Patch-Based Learning for Retinal Vessel Segmentation" Entropy 21, no. 2: 168. https://doi.org/10.3390/e21020168
APA StyleWang, C., Zhao, Z., Ren, Q., Xu, Y., & Yu, Y. (2019). Dense U-net Based on Patch-Based Learning for Retinal Vessel Segmentation. Entropy, 21(2), 168. https://doi.org/10.3390/e21020168