Transport and Energetic Properties of a Ring of Interacting Spins Coupled to Heat Baths
Abstract
:1. Introduction
2. Model
Minimality of the Model
3. Methods
4. Local Current Modes
5. Ergotropy
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Segal, D.; Nitzan, A. Spin-Boson Thermal Rectifier. Phys. Rev. Lett. 2005, 94, 034301. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.W.; Okawa, D.; Majumdar, A.; Zettl, A. Solid-State Thermal Rectifier. Science 2006, 314, 1121–1124. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, W.; Teraoka, Y.; Terasaki, I. An Oxide Thermal Rectifier. Appl. Phys. Lett. 2009, 95, 171905. [Google Scholar] [CrossRef]
- Arrachea, L.; Lozano, G.S.; Aligia, A.A. Thermal Transport in One-Dimensional Spin Heterostructures. Phys. Rev. B 2009, 80, 014425. [Google Scholar] [CrossRef]
- Wu, L.A.; Segal, D. Sufficient Conditions for Thermal Rectification in Hybrid Quantum Structures. Phys. Rev. Lett. 2009, 102, 095503. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yan, Y.; Wu, C.Q.; Wang, J.S.; Li, B. Reversal of Thermal Rectification in Quantum Systems. Phys. Rev. B 2009, 80, 172301. [Google Scholar] [CrossRef]
- Yan, Y.; Wu, C.Q.; Li, B. Control of Heat Transport in Quantum Spin Systems. Phys. Rev. B 2009, 79, 014207. [Google Scholar] [CrossRef]
- Werlang, T.; Marchiori, M.A.; Cornelio, M.F.; Valente, D. Optimal Rectification in the Ultrastrong Coupling Regime. Phys. Rev. E 2014, 89, 062109. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Pérez, M.J.; Fornieri, A.; Giazotto, F. Rectification of Electronic Heat Current by a Hybrid Thermal Diode. Nat. Nanotechnol. 2015, 10, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Balachandran, V.; Clark, S.R.; Goold, J.; Poletti, D. Heat Current Rectification and Mobility Edges. arXiv, 2018; arXiv:1809.10640. [Google Scholar]
- Balachandran, V.; Benenti, G.; Pereira, E.; Casati, G.; Poletti, D. Perfect Diode in Quantum Spin Chains. Phys. Rev. Lett. 2018, 120, 200603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balachandran, V.; Benenti, G.; Pereira, E.; Casati, G.; Poletti, D. Heat Current Rectification in Segmented XXZ Chains. arXiv, 2018; arXiv:1809.01917. [Google Scholar]
- Motz, T.; Wiedmann, M.; Stockburger, J.T.; Ankerhold, J. Rectification of Heat Currents across Nonlinear Quantum Chains: A Versatile Approach beyond Weak Thermal Contact. New J. Phys. 2018, 20, 113020. [Google Scholar] [CrossRef]
- Joulain, K.; Drevillon, J.; Ezzahri, Y.; Ordonez-Miranda, J. Quantum Thermal Transistor. Phys. Rev. Lett. 2016, 116, 200601. [Google Scholar] [CrossRef] [PubMed]
- Kosloff, R.; Levy, A. Quantum Heat Engines and Refrigerators: Continuous Devices. Annu. Rev. Phys. Chem. 2014, 65, 365–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uzdin, R.; Levy, A.; Kosloff, R. Equivalence of Quantum Heat Machines, and Quantum-Thermodynamic Signatures. Phys. Rev. X 2015, 5, 031044. [Google Scholar] [CrossRef]
- Gelbwaser-Klimovsky, D.; Niedenzu, W.; Kurizki, G. Thermodynamics of Quantum Systems Under Dynamical Control. Adv. At. Mol. Opt. Phys. 2015, 64, 329–407. [Google Scholar]
- Altintas, F.; Hardal, A.U.C.; Müstecaplıoğlu, O.E. Rabi Model as a Quantum Coherent Heat Engine: From Quantum Biology to Superconducting Circuits. Phys. Rev. A 2015, 91, 023816. [Google Scholar] [CrossRef]
- Benenti, G.; Casati, G.; Saito, K.; Whitney, R.S. Fundamental Aspects of Steady-State Conversion of Heat to Work at the Nanoscale. Phys. Rep. 2017, 694, 1–124. [Google Scholar] [CrossRef]
- Bissbort, U.; Teo, C.; Guo, C.; Casati, G.; Benenti, G.; Poletti, D. Minimal Motor for Powering Particle Motion from Spin Imbalance. Phys. Rev. E 2017, 95, 062143. [Google Scholar] [CrossRef] [PubMed]
- Seah, S.; Nimmrichter, S.; Scarani, V. Work Production of Quantum Rotor Engines. New J. Phys. 2018, 20, 043045. [Google Scholar] [CrossRef]
- Roulet, A.; Nimmrichter, S.; Taylor, J.M. An Autonomous Single-Piston Engine with a Quantum Rotor. Quantum Sci. Technol. 2018, 3, 035008. [Google Scholar] [CrossRef]
- Hovhannisyan, K.V.; Imparato, A. Defining and Generating Current in Open Quantum Systems. arXiv, 2018; arXiv:1806.08779. [Google Scholar]
- Blickle, V.; Bechinger, C. Realization of a Micrometre-Sized Stochastic Heat Engine. Nat. Phys. 2012, 8, 143–146. [Google Scholar] [CrossRef]
- Martínez, I.A.; Roldán, E.; Dinis, L.; Petrov, D.; Parrondo, J.M.R.; Rica, R.A. Brownian Carnot Engine. Nat. Phys. 2016, 12, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Serra-Garcia, M.; Foehr, A.; Molerón, M.; Lydon, J.; Chong, C.; Daraio, C. Mechanical Autonomous Stochastic Heat Engine. Phys. Rev. Lett. 2016, 117, 010602. [Google Scholar] [CrossRef] [PubMed]
- Roßnagel, J.; Dawkins, S.T.; Tolazzi, K.N.; Abah, O.; Lutz, E.; Schmidt-Kaler, F.; Singer, K. A Single-Atom Heat Engine. Science 2016, 352, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Klatzow, J.; Becker, J.N.; Ledingham, P.M.; Weinzetl, C.; Kaczmarek, K.T.; Saunders, D.J.; Nunn, J.; Walmsley, I.A.; Uzdin, R.; Poem, E. Experimental Demonstration of Quantum Effects in the Operation of Microscopic Heat Engines. arXiv, 2017; arXiv:1710.08716. [Google Scholar]
- Van Horne, N.; Yum, D.; Dutta, T.; Hänggi, P.; Gong, J.; Poletti, D.; Mukherjee, M. Single Atom Energy-Conversion Device with a Quantum Load. arXiv, 2018; arXiv:1812.01303. [Google Scholar]
- von Lindenfels, D.; Gräb, O.; Schmiegelow, C.T.; Kaushal, V.; Schulz, J.; Schmidt-Kaler, F.; Poschinger, U.G. A Spin Heat Engine Coupled to a Harmonic-Oscillator Flywheel. arXiv, 2018; arXiv:1808.02390. [Google Scholar]
- Peterson, J.P.S.; Batalhão, T.B.; Herrera, M.; Souza, A.M.; Sarthour, R.S.; Oliveira, I.S.; Serra, R.M. Experimental Characterization of a Spin Quantum Heat Engine. arXiv, 2018; arXiv:1803.06021. [Google Scholar]
- Levy, A.; Kosloff, R. Quantum Absorption Refrigerator. Phys. Rev. Lett. 2012, 108, 070604. [Google Scholar] [CrossRef] [PubMed]
- Linden, N.; Popescu, S.; Skrzypczyk, P. How Small Can Thermal Machines Be? The Smallest Possible Refrigerator. Phys. Rev. Lett. 2010, 105, 130401. [Google Scholar] [CrossRef] [PubMed]
- Mitchison, M.T.; Huber, M.; Prior, J.; Woods, M.P.; Plenio, M.B. Realising a Quantum Absorption Refrigerator with an Atom-Cavity System. Quantum Sci. Technol. 2016, 1, 015001. [Google Scholar] [CrossRef]
- Maslennikov, G.; Ding, S.; Hablutzel, R.; Gan, J.; Roulet, A.; Nimmrichter, S.; Dai, J.; Scarani, V.; Matsukevich, D. Quantum Absorption Refrigerator with Trapped Ions. arXiv, 2017; arXiv:1702.08672. [Google Scholar]
- Mu, A.; Agarwalla, B.K.; Schaller, G.; Segal, D. Qubit Absorption Refrigerator at Strong Coupling. New J. Phys. 2017, 19, 123034. [Google Scholar] [CrossRef]
- Seah, S.; Nimmrichter, S.; Scarani, V. Refrigeration beyond Weak Internal Coupling. Phys. Rev. E 2018, 98, 012131. [Google Scholar] [CrossRef] [PubMed]
- Campaioli, F.; Pollock, F.A.; Binder, F.C.; Céleri, L.; Goold, J.; Vinjanampathy, S.; Modi, K. Enhancing the Charging Power of Quantum Batteries. Phys. Rev. Lett. 2017, 118, 150601. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, D.; Campisi, M.; Andolina, G.M.; Pellegrini, V.; Polini, M. High-Power Collective Charging of a Solid-State Quantum Battery. Phys. Rev. Lett. 2018, 120, 117702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andolina, G.M.; Farina, D.; Mari, A.; Pellegrini, V.; Giovannetti, V.; Polini, M. Charger-Mediated Energy Transfer in Exactly Solvable Models for Quantum Batteries. Phys. Rev. B 2018, 98, 205423. [Google Scholar] [CrossRef]
- Allahverdyan, A.E.; Balian, R.; Nieuwenhuizen, T.M. Maximal Work Extraction from Finite Quantum Systems. Europhys. Lett. 2004, 67, 565. [Google Scholar] [CrossRef]
- Redfield, A.G. On the Theory of Relaxation Processes. IBM J. Res. Dev. 1957, 1, 19–31. [Google Scholar] [CrossRef]
- Fleming, C.H.; Cummings, N.I. Accuracy of Perturbative Master Equations. Phys. Rev. E 2011, 83, 031117. [Google Scholar] [CrossRef] [PubMed]
- Thingna, J.; Wang, J.S.; Hänggi, P. Generalized Gibbs State with Modified Redfield Solution: Exact Agreement up to Second Order. J. Chem. Phys. 2012, 136, 194110. [Google Scholar] [CrossRef] [PubMed]
- Thingna, J.; Wang, J.S.; Hänggi, P. Reduced Density Matrix for Nonequilibrium Steady States: A Modified Redfield Solution Approach. Phys. Rev. E 2013, 88, 052127. [Google Scholar] [CrossRef] [PubMed]
- Purkayastha, A.; Dhar, A.; Kulkarni, M. Out-of-Equilibrium Open Quantum Systems: A Comparison of Approximate Quantum Master Equation Approaches with Exact Results. Phys. Rev. A 2016, 93, 062114. [Google Scholar] [CrossRef]
- Wichterich, H.; Henrich, M.J.; Breuer, H.P.; Gemmer, J.; Michel, M. Modeling Heat Transport through Completely Positive Maps. Phys. Rev. E 2007, 76, 031115. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Thingna, J.; Wang, J.S. Finite Coupling Effects in Double Quantum Dots near Equilibrium. Phys. Rev. B 2017, 95, 035428. [Google Scholar] [CrossRef]
- Rivas, A.; Martin-Delgado, M.A. Topological Heat Transport and Symmetry-Protected Boson Currents. Sci. Rep. 2017, 7, 6350. [Google Scholar] [CrossRef] [PubMed]
- Ishizaki, A.; Fleming, G.R. On the Adequacy of the Redfield Equation and Related Approaches to the Study of Quantum Dynamics in Electronic Energy Transfer. J. Chem. Phys. 2009, 130, 234110. [Google Scholar] [CrossRef] [PubMed]
- Gorini, V.; Kossakowski, A.; Sudarshan, E.C.G. Completely Positive Dynamical Semigroups of N-level Systems. J. Math. Phys. 1976, 17, 821–825. [Google Scholar] [CrossRef]
- Lindblad, G. On the Generators of Quantum Dynamical Semigroups. Commun. Math. Phys. 1976, 48, 119–130. [Google Scholar] [CrossRef]
- Breuer, H.P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Kołodyński, J.; Brask, J.B.; Perarnau-Llobet, M.; Bylicka, B. Adding Dynamical Generators in Quantum Master Equations. Phys. Rev. A 2018, 97, 062124. [Google Scholar] [CrossRef]
- Xu, X.; Thingna, J.; Guo, C.; Poletti, D. Many-Body Open Quantum Systems beyond Lindblad Master Equations. Phys. Rev. A 2019, 99, 012106. [Google Scholar] [CrossRef]
- Levy, A.; Kosloff, R. The Local Approach to Quantum Transport May Violate the Second Law of Thermodynamics. Europhys. Lett. 2014, 107, 20004. [Google Scholar] [CrossRef]
- Blum, K. Density Matrix Theory and Applications, 3nd ed.; Springer Series on Atomic, Optical, and Plasma Physics; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Pusz, W.; Woronowicz, S.L. Passive States and KMS States for General Quantum Systems. Commun. Math. Phys. 1978, 58, 273–290. [Google Scholar] [CrossRef]
- Porras, D.; Cirac, J.I. Effective Quantum Spin Systems with Trapped Ions. Phys. Rev. Lett. 2004, 92, 207901. [Google Scholar] [CrossRef] [PubMed]
- Bermudez, A.; Schaetz, T.; Porras, D. Synthetic Gauge Fields for Vibrational Excitations of Trapped Ions. Phys. Rev. Lett. 2011, 107, 150501. [Google Scholar] [CrossRef] [PubMed]
- Bermudez, A.; Bruderer, M.; Plenio, M.B. Controlling and Measuring Quantum Transport of Heat in Trapped-Ion Crystals. Phys. Rev. Lett. 2013, 111, 040601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogge, M.C.; Haug, R.J. Two-Path Transport Measurements on a Triple Quantum Dot. Phys. Rev. B 2008, 77, 193306. [Google Scholar] [CrossRef]
- Thalineau, R.; Hermelin, S.; Wieck, A.D.; Bäuerle, C.; Saminadayar, L.; Meunier, T. A Few-Electron Quadruple Quantum Dot in a Closed Loop. Appl. Phys. Lett. 2012, 101, 103102. [Google Scholar] [CrossRef]
- Seo, M.; Choi, H.K.; Lee, S.Y.; Kim, N.; Chung, Y.; Sim, H.S.; Umansky, V.; Mahalu, D. Charge Frustration in a Triangular Triple Quantum Dot. Phys. Rev. Lett. 2013, 110, 046803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogl, M.; Schaller, G.; Brandes, T. Criticality in Transport through the Quantum Ising Chain. Phys. Rev. Lett. 2012, 109, 240402. [Google Scholar] [CrossRef] [PubMed]
- Schaller, G.; Vogl, M.; Brandes, T. Transport as a Sensitive Indicator of Quantum Criticality. J. Phys. Condens. Matter 2014, 26, 265001. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Choo, K.; Balachandran, V.; Poletti, D. Transport and Energetic Properties of a Ring of Interacting Spins Coupled to Heat Baths. Entropy 2019, 21, 228. https://doi.org/10.3390/e21030228
Xu X, Choo K, Balachandran V, Poletti D. Transport and Energetic Properties of a Ring of Interacting Spins Coupled to Heat Baths. Entropy. 2019; 21(3):228. https://doi.org/10.3390/e21030228
Chicago/Turabian StyleXu, Xiansong, Kenny Choo, Vinitha Balachandran, and Dario Poletti. 2019. "Transport and Energetic Properties of a Ring of Interacting Spins Coupled to Heat Baths" Entropy 21, no. 3: 228. https://doi.org/10.3390/e21030228
APA StyleXu, X., Choo, K., Balachandran, V., & Poletti, D. (2019). Transport and Energetic Properties of a Ring of Interacting Spins Coupled to Heat Baths. Entropy, 21(3), 228. https://doi.org/10.3390/e21030228