Infrared Brazing of CoCrFeMnNi Equiatomic High Entropy Alloy Using Nickel-Based Braze Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Dynamic Wetting Angle Measurement
3.2. Microstructural Observations of Infrared Brazed CoCrFeMnNi/BNi-2/CoCrFeMnNi Joints
3.3. Microstructural Observations of Infrared Brazed CoCrFeMnNi/MBF601/CoCrFeMnNi Joints
3.4. Shear Strength and Failure Analyses of Fractured Surfaces after Shear Tests
4. Conclusions
- The dynamic wetting angle measurement indicates that the wettability of BNi-2 and MBF601 filler metals is great at the temperatures 50 °C above their liquidus temperatures, but poor at the temperatures 20 °C above their liquidus temperatures.
- CoCrFeMnNi/BNi-2/CoCrFeMnNi brazed joints are dominated by Ni-rich matrix with huge CrB and a few tiny boride precipitates. Increasing the brazing time and/or temperature decrease the number of borides in the joint, and the grain boundary boride in the substrate becomes thicker and coarser. Average shear strengths of joints increase with increasing brazing temperature and/or time, and fracture location is changed from blocky CrB in the brazed zone into grain boundary boride in the substrate.
- CoCrFeMnNi/MBF601/CoCrFeMnNi brazed joints are composed of CoCrFeMnNi-based matrix, particles of B/Co/Cr/Fe/Mn/Ni/P compounds, and many phosphides form along the grain boundaries of the substrate. The specimen brazed with MBF601 filler foil at 1050 °C for 600 s has the highest average shear strength of 321 MPa, while that brazed at 1080 °C has a lower average shear strength due to the presence of solidification shrinkage voids.
Author Contributions
Funding
Conflicts of Interest
References
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Yeh, J.W. Recent progress in high entropy alloys. Ann. Chim. Sci. Mater. 2006, 31, 633–648. [Google Scholar] [CrossRef]
- Yeh, J.W. Alloy design strategies and future trends in high-entropy alloys. JOM 2013, 65, 1759–1771. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Otto, F.; Yang, Y.; Bei, H.; George, E.P. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 2013, 61, 2628–2638. [Google Scholar] [CrossRef] [Green Version]
- Tsai, K.Y.; Tsai, M.H.; Yeh, J.W. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 2013, 61, 4887–4897. [Google Scholar] [CrossRef]
- Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E.H.; George, E.P.; Ritchie, R.O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otto, F.; Dlouhý, A.; Somsen, C.; Bei, H.; Eggeler, G.; George, E.P. The Influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013, 61, 5743–5755. [Google Scholar] [CrossRef]
- Gludovatz, B.; George, E.P.; Ritchie, R.O. Processing, microstructure and mechanical properties of the CrMnFeCoNi high-entropy alloy. JOM 2015, 67, 2262–2270. [Google Scholar] [CrossRef]
- Lee, S.J.; Wu, S.K.; Lin, R.Y. Infrared joining of TiAl intermetallics using Ti-15Cu-15Ni foil—I. The microstructure morphologies of joint interfaces. Acta Mater. 1998, 46, 1283–1295. [Google Scholar] [CrossRef]
- Shiue, R.K.; Wu, S.K.; Chen, S.Y. Infrared brazing of TiAl intermetallic using BAg-8 braze alloy. Acta Mater. 2003, 51, 1991–2004. [Google Scholar] [CrossRef]
- Shiue, R.K.; Wu, S.K.; Chen, Y.T. Strong bonding of infrared brazed α2-Ti3Al and Ti–6Al–4V using Ti–Cu–Ni fillers. Intermetallics 2010, 18, 107–114. [Google Scholar] [CrossRef]
- Shiue, R.K.; Wu, S.K.; Yang, S.H. Infrared brazing of Ti50Ni50 shape memory alloy and Inconel 600 alloy with two Ag-Cu-Ti active braze alloys. Metall. Mater. Trans. A 2017, 48, 735–744. [Google Scholar] [CrossRef]
- Bridges, D.; Zhang, S.; Lang, S.; Gao, M.; Yu, Z.; Feng, Z.; Hu, A. Laser brazing of a nickel-based superalloy using a Ni-Mn-Fe-Co-Cu high entropy alloy filler metal. Mater. Lett. 2018, 215, 11–14. [Google Scholar] [CrossRef]
- Olsen, D.L.; Siewert, I.A.; Liu, S.; Edwards, G.R. ASM Handbook Volume 6: Welding, Brazing and Soldering; ASM International: Materials Park, OH, USA, 1990. [Google Scholar]
- Shiue, R.H.; Wu, S.K.; Chan, C.H. Infrared brazing Cu and Ti using a 95Ag-5Al braze alloy. Metall. Mater. Trans. A 2004, 35, 3177–3186. [Google Scholar] [CrossRef]
- Ou, C.L.; Liaw, D.W.; Du, Y.C.; Shiue, R.K. Brazing of 422 stainless steel using the AWS classification BNi-2 braze alloy. J. Mater. Sci. 2006, 41, 6353–6361. [Google Scholar] [CrossRef]
- Humpston, G.; Jacobson, D.M. Principles of Soldering and Brazing; ASM International: Materials Park, OH, USA, 1993. [Google Scholar]
- Lugscheider, E.; Partz, K.D. High temperature brazing of stainless steel with nickel-base filler metals BNi-2, BNi-5 and BNi-7. Weld. J. 1983, 6, 160s–164s. [Google Scholar]
- Sun, S.J.; Tian, Y.Z.; Lin, H.R.; Dong, X.G.; Wang, Y.H.; Zhang, Z.J.; Zhang, Z.F. Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure. Mater. Des. 2017, 133, 122–127. [Google Scholar] [CrossRef]
- Sun, S.J.; Tian, Y.Z.; Lin, H.R.; Yang, H.J.; Dong, X.G.; Wang, Y.H.; Zhang, Z.F. Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement. Mater. Sci. Eng. A 2018, 712, 603–607. [Google Scholar] [CrossRef]
- Gali, A.; George, E.P. Tensile properties of high- and medium-entropy alloys. Intermetallics 2013, 39, 74–78. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.W.; Moon, J.; Jang, M.J.; Yim, D.; Kim, D.; Lee, S.; Kim, H.S. Trade-off between tensile property and formability by partial recrystallization of CrMnFeCoNi high-entropy alloy. Mater. Sci. Eng. A 2017, 703, 324–330. [Google Scholar] [CrossRef]
- Dieter, G.E. Mechanical Metallurgy; McGraw-Hill Book Company: New York, NY, USA, 1988. [Google Scholar]
- Schwartz, M.M. Brazing, 2nd ed.; ASM International: Materials Park, OH, USA, 2003. [Google Scholar]
Filler Foil | BNi-2 | MBF601 |
---|---|---|
Composition (wt%) | Ni-7Cr-3.125B-4.5Si | Ni-16Cr-32Fe-1.5Si-0.5B-6P-1.5Mo |
Solidus temperature | 971 °C | 960 °C |
Liquidus temperature | 998 °C | 1030 °C |
Filler Foil | Brazing Time (s) | Brazing Temperature (°C) | ||
---|---|---|---|---|
1020 | 1050 | 1080 | ||
BNi-2 | 180 | S/M | ||
300 | S/M/W | W | ||
600 | S/M | S/M | ||
MBF601 | 180 | S/M | ||
300 | W | W | ||
600 | S/M | S/M |
at.% | A | B1 | B2 | B3 | C | D | E |
---|---|---|---|---|---|---|---|
Co | 20.2 | 7.8 | 6.6 | 6.0 | 19.0 | 1.3 | 0.1 |
Cr | 20.5 | 37.0 | 42.0 | 46.2 | 19.3 | 6.4 | 46.5 |
Fe | 20.0 | 10.3 | 9.7 | 9.3 | 17.9 | 4.6 | 0.4 |
Mn | 19.8 | 11.6 | 10.8 | 10.5 | 14.4 | 0.5 | 0.3 |
Ni | 19.5 | 5.9 | 4.3 | 3.9 | 21.4 | 74.2 | 7.6 |
B | - | 27.4 | 26.6 | 24.1 | 7.6 | 5.4 | 44.5 |
Si | - | - | - | 0.1 | 0.4 | 7.6 | 0.6 |
Phase | CoCrFeMnNi | boride | boride | boride | - | Ni-rich | CrB |
at.% | F | G | H | I |
---|---|---|---|---|
Co | 17.7 | 11.8 | 7.6 | 12.6 |
Cr | 19.2 | 19.5 | 34.5 | 25.8 |
Fe | 22.9 | 24.5 | 10.1 | 7.2 |
Mn | 15.1 | 12.8 | 8.3 | 11.5 |
Ni | 23.7 | 26.3 | 9.4 | 10.1 |
B | - | 2.4 | 13.1 | 1.5 |
Si | 0.5 | 1.0 | 0.2 | 0.1 |
P | 0.8 | 1.4 | 15.9 | 30.9 |
Mo | 0.1 | 0.3 | 0.9 | 0.3 |
Phase | CoCrFeMnNi-based | CoCrFeMnNi-based | B/Co/Cr/Fe/Mn/Ni/P compound | Phosphide |
Filler Foil | Brazing Temperature (°C) | Brazing Time (s) | Average Shear Strength (MPa) |
---|---|---|---|
BNi-2 | 1020 | 180 | 193 ± 21 |
300 | 305 ± 27 | ||
600 | 310 ± 47 | ||
1050 | 600 | 319 ± 21 | |
MBF601 | 1050 | 180 | 291 ± 28 |
600 | 321 ± 28 | ||
1080 | 600 | 271 ± 6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.; Shiue, R.-K.; Wu, S.-K.; Huang, H.-L. Infrared Brazing of CoCrFeMnNi Equiatomic High Entropy Alloy Using Nickel-Based Braze Alloys. Entropy 2019, 21, 283. https://doi.org/10.3390/e21030283
Lin C, Shiue R-K, Wu S-K, Huang H-L. Infrared Brazing of CoCrFeMnNi Equiatomic High Entropy Alloy Using Nickel-Based Braze Alloys. Entropy. 2019; 21(3):283. https://doi.org/10.3390/e21030283
Chicago/Turabian StyleLin, Chieh, Ren-Kae Shiue, Shyi-Kaan Wu, and Huai-Li Huang. 2019. "Infrared Brazing of CoCrFeMnNi Equiatomic High Entropy Alloy Using Nickel-Based Braze Alloys" Entropy 21, no. 3: 283. https://doi.org/10.3390/e21030283
APA StyleLin, C., Shiue, R. -K., Wu, S. -K., & Huang, H. -L. (2019). Infrared Brazing of CoCrFeMnNi Equiatomic High Entropy Alloy Using Nickel-Based Braze Alloys. Entropy, 21(3), 283. https://doi.org/10.3390/e21030283