On the Thermodynamic Origin of Gravitational Force by Applying Spacetime Entanglement Entropy and the Unruh Effect
Abstract
:1. Introduction
2. Vacuum Quantum Fluctuations and the Unruh Effect for Minkowski Spacetime and Curved Spacetime
2.1. The Unruh Effect for an Accelerating Particle in Minkowski Spacetime
2.2. The Unruh Effect for Curved Spacetime
2.3. The Unruh Effect for Gravitational Field
- should be regarded as a peak value of a local temperature distribution in an inertial frame of reference.
- Besides the case of an electrically-charged particle usually considered for the Unruh effect, the particle may have other types of charges. Hence, may also mean the temperature for other gauge fields, such as the gravitational field. Because the gravitational field is universal for any particle, Equation (7) can be applied to the gravitational field. In this paper, the Unruh temperature is considered mainly for the gravitational field.
3. Finite Spacetime Temperature Distribution Due to Matter
3.1. The Spacetime Quantum Fluctuations
3.2. Spacetime Entanglement Entropy and Spacetime Temperature
4. Newtonian Gravitational Force Derived by the Consideration of Local Spacetime Thermal Equilibrium
4.1. Spacetime Thermal Equilibrium
4.2. Quasi-Static Process to Determine the Direction of Gravitational Force
4.3. Free-Fall Motion
5. Relativistic Formula of the Spacetime Temperature of a Classical Particle
6. Potential Application to Modified Gravity
7. Summary and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Holzhey, C.; Larsen, F.; Wilczek, F. Geometric and renormalized entropy in conformal field theory. Nucl. Phys. B 1994, 424, 443–467. [Google Scholar] [CrossRef] [Green Version]
- Verlinde, E. On the origin of gravity and the laws of Newton. J. High Energy Phys. 2011. [Google Scholar] [CrossRef]
- Skenderis, K.; Taylor, M. The fuzzball proposal for black holes. Phys. Rep. 2008, 467, 117–171. [Google Scholar] [CrossRef] [Green Version]
- Blanco, D.D.; Casini, H.; Hung, L.Y.; Myers, R.C. Relative entropy and holography. J. High Energy Phys. 2013. [Google Scholar] [CrossRef]
- Van Raamsdonk, M. Building up spacetime with quantum entanglement. Gen. Rel. Gravit. 2010, 42, 2323–2329. [Google Scholar] [CrossRef]
- Lashkari, N.; McDermott, M.B.; Van Raamsdonk, M. Gravitational dynamics from entanglement thermodynamics. J. High Energy Phys. 2014. [Google Scholar] [CrossRef]
- Resconi, G.; Licata, I.; Fiscaletti, D. Unification of quantum and gravity by nonclassical information entropy space. Entropy 2013, 15, 3602–3619. [Google Scholar] [CrossRef]
- Licata, I.; Chiatti, L. The archaic universe: Big bang, cosmological term and the quantum origin of time in projective cosmology. Int. J. Theor. Phys. 2009, 48, 1003–1018. [Google Scholar] [CrossRef]
- Lamb, W.E.; Retherford, R.C. Fine structure of the hydrogen atom by a microwave method. Phys. Rev. 1947, 72, 241–243. [Google Scholar] [CrossRef]
- Bethe, H.A. The electromagnetic shift of energy levels. Phys. Rev. 1947, 72, 339–341. [Google Scholar] [CrossRef]
- Lamoreaux, S.K. Demonstration of the Casimir force in the 0.6 to 6 mu m range. Phys. Rev. Lett. 1997, 78, 5–8. [Google Scholar] [CrossRef]
- Stephens, C.R.; ’t Hooft, G.; Whiting, B.F. Black-hole evaporation without information loss. Class. Quantum Grav. 1994, 11, 621–647. [Google Scholar] [CrossRef]
- Susskind, L. The world as a hologram. J. Math. Phys. 1995, 36, 6377–6396. [Google Scholar] [CrossRef] [Green Version]
- Bousso, R. The holographic principle. Rev. Mod. Phys. 2002, 74, 825–874. [Google Scholar] [CrossRef] [Green Version]
- Hawking, S.W. Particle creation by black-holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black holes and entropy. Phys. Rev. D 1973, 7, 2333–2346. [Google Scholar] [CrossRef]
- Unruh, W.G. Notes on black-hole evaporation. Phys. Rev. D 1976, 14, 870–892. [Google Scholar] [CrossRef]
- Almheiri, A.; Marolf, D.; Polchinski, J.; Sully, J. Black holes: complementarity or firewalls? J. High Energy Phys. 2013. [Google Scholar] [CrossRef]
- Kosloff, R. Quantum thermodynamics: A dynamical viewpoint. Entropy 2013, 15, 2100–2128. [Google Scholar] [CrossRef]
- Lieb, E.H.; Yngvason, J. The physics and mathematics of the second law of thermodynamics. Phys. Rep. 1999, 310, 1–96. [Google Scholar] [CrossRef] [Green Version]
- Brandao, F.; Horodecki, M.; Ng, N.; Oppenheim, J.; Wehner, S. The second laws of quantum thermodynamics. Proc. Natl. Acad. Sci. USA 2015, 112, 3275–3279. [Google Scholar] [CrossRef] [Green Version]
- Gemmer, J.; Michel, M.; Mahler, G. Quantum Thermodynamics; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Peebles, P.J.E.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559–606. [Google Scholar] [CrossRef] [Green Version]
- Xiong, H.W. On the quantitative calculation of the cosmological constant of the quantum vacuum. arXiv, 2018; arXiv:1805.10440. [Google Scholar]
- Fulling, S.A. Nonuniqueness of canonical field quantization in Riemannian space-time. Phys. Rev. D 1973, 7, 2850–2862. [Google Scholar] [CrossRef]
- Davies, P.C.W. Scalar particle production in Schwarzschild and Rindler metrics. J. Phys. A 1975, 8, 609–616. [Google Scholar] [CrossRef]
- Zee, A. Einstein Gravity in a Nutshell; Princeton University Press: Princeton, NJ, USA, 2013. [Google Scholar]
- Carroll, S. Spacetime and Geometry; Pearson: Edinburgh, UK, 2014. [Google Scholar]
- Wald, R.M. Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics; University of Chicago Press: Chicago, IL, USA, 1994. [Google Scholar]
- Jacobson, T.A. Introductory Lectures on Black Hole Thermodynamics; Lectures at University of Utrecht, 1996. Available online: http://www.physics.umd.edu/grt/taj/776b/lectures.pdf (accessed on 20 January 2019).
- Wheeler, J.A. Geons. Phys. Rev. 1955, 97, 511–536. [Google Scholar] [CrossRef]
- Power, E.A.; Wheeler, J.A. Thermal geons. Rev. Mod. Phys. 1957, 29, 480–495. [Google Scholar] [CrossRef]
- Everett, H. Relative state formulation of quantum mechanics. Rev. Mod. Phys. 1957, 29, 454–462. [Google Scholar] [CrossRef]
- Hawking, S.W.; Horowitz, G.T.; Ross, S.F. Entropy, area, and black-hole pairs. Phys. Rev. D 1995, 51, 4302–4314. [Google Scholar] [CrossRef]
- Srednicki, M. Entropy and area. Phys. Rev. Lett. 1993, 71, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Eisert, J.; Cramer, M.; Plenio, M.B. Colloquium: area laws for the entanglement entropy. Rev. Mod. Phys. 2010, 82, 277–306. [Google Scholar] [CrossRef]
- Milgrom, M. The modified dynamics as a vacuum effect. Phys. Lett. A 1999, 253, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Haisch, B.; Rueda, A.; Puthoff, H.E. Inertia as a zero-point-field Lorentz force. Phys. Rev. A 1993, 49, 678–694. [Google Scholar] [CrossRef]
- McCulloch, M.E. Modelling the Pioneer anomaly as modified inertia. Mon. Not. R. Astron. 2007, 376, 338–342. [Google Scholar] [CrossRef]
- McCulloch, M.E. Minimum accelerations from quantised inertia. Europhys. Lett. 2010, 90, 29001. [Google Scholar] [CrossRef] [Green Version]
- Milgrom, M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 1983, 270, 365–370. [Google Scholar] [CrossRef]
- Anderson, J.D.; Laing, P.A.; Lau, E.L.; Liu, A.S.; Nieto, M.M.; Turyshev, S.G. Indication, from Pioneer 10/11, Galileo and Ulysses Data, of an apparent anomalous, weak, long-range acceleration. Phys. Rev. Lett. 1998, 81, 2858–2861. [Google Scholar] [CrossRef]
- Fierz, M.; Pauli, W. On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc. R. Soc. Lond. A 1939, 173, 211–232. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Phys. Rev. Lett. 2017, 118, 221101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, R.G.; Hu, Y.P.; Pan, Q.Y.; Zhang, Y.L. Thermodynamics of black holes in massive gravity. Phys. Rev. D 2015, 91, 024032. [Google Scholar] [CrossRef]
- Arraut, I. On the apparent loss of predictability inside the de Rham-Gabadadze-Tolley non-linear formulation of massive gravity: The Hawking radiation effect. Europhys. Lett. 2015, 109, 10002. [Google Scholar] [CrossRef] [Green Version]
- Arraut, I. Path-integral derivation of black-hole radiance inside the de-Rham-Gabadadze-Tolley formulation of massive gravity. Eur. Phys. J. C 2017, 77, 501. [Google Scholar] [CrossRef]
- Hu, Y.P.; Pan, F.; Wu, X.M. The effects of massive graviton on the equilibrium between the black hole and radiation gas in an isolated box. Phys. Lett. B 2017, 772, 553–558. [Google Scholar] [CrossRef]
- Capela, F.; Tinyakov, P.G. Black hole thermodynamics and massive gravity. J. High Energy Phys. 2011, 4, 1104. [Google Scholar] [CrossRef]
- Capela, F.; Nardini, G. Hairy black holes in massive gravity: Thermodynamics and phase structure. Phys. Rev. D 2012, 86, 024030. [Google Scholar] [CrossRef]
- Jacobson, T. Thermodynamics of spacetime-the Einstein equation of state. Phys. Rev. Lett. 1995, 75, 1260–1263. [Google Scholar] [CrossRef]
- Xiong, H.W. Repulsive gravitational effect of a quantum wave packet and experimental scheme with superfluid helium. Front. Phys. 2015, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, T. Thermodynamical aspects of gravity: new insights. Rep. Prog. Phys. 2010, 73, 046901. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.Z.; Feng, L.; Zhang, Z.D.; Chin, C. Quantum simulation of coherent Hawking-Unruh radiation. arXiv, 2018; arXiv:1807.07504. [Google Scholar]
- Weinberg, S. Cosmology; Oxford: New York, NY, USA, 2008. [Google Scholar]
- Scully, M.O.; Fulling, S.; Lee, D.M.; Page, D.N.; Schleich, W.P.; Svidzinsky, A.A. Quantum optics approach to radiation from atoms falling into a black hole. Proc. Natl. Acad. Sci. USA 2018, 115, 8131–8136. [Google Scholar] [CrossRef]
- Bruschi, D.E. On the weight of entanglement. Phys. Lett. B 2016, 754, 182–186. [Google Scholar] [CrossRef] [Green Version]
- Bruschi, D.E. Work drives time evolution. Ann. Phys. 2018, 394, 155–161. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Xiong, H. On the Thermodynamic Origin of Gravitational Force by Applying Spacetime Entanglement Entropy and the Unruh Effect. Entropy 2019, 21, 296. https://doi.org/10.3390/e21030296
Liu S, Xiong H. On the Thermodynamic Origin of Gravitational Force by Applying Spacetime Entanglement Entropy and the Unruh Effect. Entropy. 2019; 21(3):296. https://doi.org/10.3390/e21030296
Chicago/Turabian StyleLiu, Shujuan, and Hongwei Xiong. 2019. "On the Thermodynamic Origin of Gravitational Force by Applying Spacetime Entanglement Entropy and the Unruh Effect" Entropy 21, no. 3: 296. https://doi.org/10.3390/e21030296
APA StyleLiu, S., & Xiong, H. (2019). On the Thermodynamic Origin of Gravitational Force by Applying Spacetime Entanglement Entropy and the Unruh Effect. Entropy, 21(3), 296. https://doi.org/10.3390/e21030296