Explicit Lump Solitary Wave of Certain Interesting (3+1)-Dimensional Waves in Physics via Some Recent Traveling Wave Methods
Abstract
:1. Introduction
2. Explicit Wave Solutions of the Nonlinear Time Fractional JM Model
2.1. Utilization of Exp -Expansion Method
2.2. Utilization of the Improved F-Expansion Method
2.3. Utilization of an Extended -Expansion Method
2.4. Utilization of an Extended Tanh-Function Method
2.5. Utilization of the Simplest Equation Method
2.6. Utilization of an Extended Simplest Equation Method
2.7. Utilization of the Generalized Riccati Expansion Method
2.8. Utilization of the Generalized Sinh–Gordon Expansion Method
2.9. Utilization of Riccati–Bernoulli Sub-ODE Method
2.10. Utilization of the Modified Auxiliary Method
3. Physical Interpretation of Solution
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Atangana, A.; Gómez-Aguilar, J. Numerical approximation of Riemann-Liouville definition of fractional derivative: From Riemann-Liouville to Atangana-Baleanu. Numer. Methods Partial Differ. Equ. 2018, 34, 1502–1523. [Google Scholar] [CrossRef]
- Owolabi, K.M. Mathematical analysis and numerical simulation of chaotic noninteger order differential systems with Riemann-Liouville derivative. Numer. Methods Partial Differ. Equ. 2018, 34, 274–295. [Google Scholar] [CrossRef]
- Zhang, H.; Ye, R.; Cao, J.; Alsaedi, A. Delay-independent stability of Riemann–Liouville fractional neutral-type delayed neural networks. Neural Process. Lett. 2018, 47, 427–442. [Google Scholar] [CrossRef]
- Li, L.; Liu, J.G. A generalized definition of Caputo derivatives and its application to fractional ODEs. SIAM J. Math. Anal. 2018, 50, 2867–2900. [Google Scholar] [CrossRef]
- Kumar, K.; Pandey, R.K.; Sharma, S. Approximations of fractional integrals and Caputo derivatives with application in solving Abel’s integral equations. J. King Saud Univ.-Sci. 2018, in press. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Al-Mdallal, Q.M.; Jarad, F. Fractional logistic models in the frame of fractional operators generated by conformable derivatives. Chaos Solitons Fractals 2019, 119, 94–101. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, S.; Zhang, S. Conformable derivative approach to anomalous diffusion. Phys. Stat. Mech. Its Appl. 2018, 491, 1001–1013. [Google Scholar] [CrossRef]
- Yang, S.; Wang, L.; Zhang, S. Conformable derivative: Application to non-Darcian flow in low-permeability porous media. Appl. Math. Lett. 2018, 79, 105–110. [Google Scholar] [CrossRef]
- Anderson, D.R.; Camrud, E.; Ulness, D.J. On the nature of the conformable derivative and its applications to physics. arXiv, 2018; arXiv:1810.02005. [Google Scholar]
- Abdelhakim, A.A.; Machado, J.A.T. A critical analysis of the conformable derivative. Nonlinear Dyn. 2019, 1–11. [Google Scholar] [CrossRef]
- Almeida, R.; Guzowska, M.; Odzijewicz, T. A remark on local fractional calculus and ordinary derivatives. Open Math. 2016, 14, 1122–1124. [Google Scholar] [CrossRef] [Green Version]
- Prodanov, D. Conditions for continuity of fractional velocity and existence of fractional Taylor expansions. Chaos Solitons Fractals 2017, 102, 236–244. [Google Scholar] [CrossRef]
- Attia, R.A.; Lu, D.; Khater, M.M.; Abd elazeem, O.M. Structure of New Solitary Solutions for The Schwarzian Korteweg De Vries Equation and (2+1)-Ablowitz-Kaup-Newell-Segur Equation. Phys. J. 2018, 1, 234–254. [Google Scholar]
- Khater, M.; Attia, R.; Lu, D. Modified Auxiliary Equation Method versus Three Nonlinear Fractional Biological Models in Present Explicit Wave Solutions. Math. Comput. Appl. 2019, 24, 1. [Google Scholar] [CrossRef]
- Khater, M.M.; Lu, D.; Attia, R.A. Dispersive long wave of nonlinear fractional Wu-Zhang system via a modified auxiliary equation method. AIP Adv. 2019, 9, 025003. [Google Scholar] [CrossRef]
- Attia, R.A.; Lu, D.; MA Khater, M. Chaos and Relativistic Energy-Momentum of the Nonlinear Time Fractional Duffing Equation. Math. Comput. Appl. 2019, 24, 10. [Google Scholar] [CrossRef]
- Biswas, A.; Mirzazadeh, M.; Triki, H.; Zhou, Q.; Ullah, M.Z.; Moshokoa, S.P.; Belic, M. Perturbed resonant 1-soliton solution with anti-cubic nonlinearity by Riccati-Bernoulli sub-ODE method. Optik 2018, 156, 346–350. [Google Scholar] [CrossRef]
- Kaur, B.; Gupta, R. Dispersion analysis and improved F-expansion method for space–time fractional differential equations. Nonlinear Dyn. 2019, 1–16. [Google Scholar] [CrossRef]
- Islam, M.S.; Akbar, M.A.; Khan, K. Analytical solutions of nonlinear Klein–Gordon equation using the improved F-expansion method. Opt. Quantum Electron. 2018, 50, 224. [Google Scholar] [CrossRef]
- Pandir, Y.; Duzgun, H.H. New exact solutions of the space-time fractional cubic Schrodinger equation using the new type F-expansion method. Waves Random Complex Media 2018, 1–10. [Google Scholar] [CrossRef]
- Liu, X.Z.; Yu, J.; Lou, Z.M.; Cao, Q.J. Residual Symmetry Reduction and Consistent Riccati Expansion of the Generalized Kaup-Kupershmidt Equation. Commun. Theor. Phys. 2018, 69, 625. [Google Scholar] [CrossRef]
- Raza, N.; Abdullah, M.; Butt, A.R.; Murtaza, I.G.; Sial, S. New exact periodic elliptic wave solutions for extended quantum Zakharov–Kuznetsov equation. Opt. Quantum Electron. 2018, 50, 177. [Google Scholar] [CrossRef]
- Shahoot, A.; Alurrfi, K.; Hassan, I.; Almsri, A. Solitons and other exact solutions for two nonlinear PDEs in mathematical physics using the generalized projective Riccati equations method. Adv. Math. Phys. 2018, 2018, 6870310. [Google Scholar] [CrossRef]
- Rezazadeh, H.; Korkmaz, A.; Eslami, M.; Vahidi, J.; Asghari, R. Traveling wave solution of conformable fractional generalized reaction Duffing model by generalized projective Riccati equation method. Opt. Quantum Electron. 2018, 50, 150. [Google Scholar] [CrossRef]
- El-Horbaty, M.; Ahmed, F. The Solitary Travelling Wave Solutions of Some Nonlinear Partial Differential Equations Using the Modified Extended Tanh Function Method with Riccati Equation. Asian Res. J. Math. 2018, 1–13. [Google Scholar] [CrossRef]
- Tian, Y. Quasi hyperbolic function expansion method and tanh-function method for solving vibrating string equation and elastic rod equation. J. Low Freq. Noise Vib. Act. Control 2019. [Google Scholar] [CrossRef]
- Pandir, Y.; Yildirim, A. Analytical approach for the fractional differential equations by using the extended tanh method. Waves Random Complex Media 2018, 28, 399–410. [Google Scholar] [CrossRef]
- Jimbo, M.; Miwa, T. Solitons and infinite dimensional Lie algebras. Publ. Res. Inst. Math. Sci. 1983, 19, 943–1001. [Google Scholar] [CrossRef]
- Kac, V.G.; van de Leur, J.W. The n-component KP hierarchy and representation theory. J. Math. Phys. 2003, 44, 3245–3293. [Google Scholar] [CrossRef]
- Zograf, P. Enumeration of Grothendieck’s dessins and KP hierarchy. Int. Math. Res. Not. 2015, 2015, 13533–13544. [Google Scholar] [CrossRef]
- Li, C.; Cheng, J.; Tian, K.; Li, M.; He, J. Ghost symmetry of the discrete KP hierarchy. Monatsh. Math. 2016, 180, 815–832. [Google Scholar] [CrossRef]
- Chalykh, O.; Silantyev, A. KP hierarchy for the cyclic quiver. J. Math. Phys. 2017, 58, 071702. [Google Scholar] [CrossRef] [Green Version]
- Kodama, Y. Lax-Sato Formulation of the KP Hierarchy. In KP Solitons and the Grassmannians; Springer: Berlin/Heidelberg, Germany, 2017; pp. 25–40. [Google Scholar]
- Nakayashiki, A. Degeneration of trigonal curves and solutions of the KP-hierarchy. Nonlinearity 2018, 31, 3567. [Google Scholar] [CrossRef]
- Gaillard, P. Rational solutions to the KPI equation and multi rogue waves. Ann. Phys. 2016, 367, 1–5. [Google Scholar] [CrossRef]
- Boiti, M.; Pempinelli, F.; Pogrebkov, A. KPII: Cauchy–Jost function, Darboux transformations and totally nonnegative matrices. J. Phys. Math. Theor. 2017, 50, 304001. [Google Scholar] [CrossRef] [Green Version]
- Korkmaz, A. Exact solutions to (3+1) conformable time fractional Jimbo–Miwa, Zakharov–Kuznetsov and modified Zakharov–Kuznetsov equations. Commun. Theor. Phys. 2017, 67, 479. [Google Scholar] [CrossRef]
- Aksoy, E.; Guner, O.; Bekir, A.; Cevikel, A.C. Exact solutions of the (3+1)-dimensional space-time fractional Jimbo-Miwa equation. AIP Conf. Proc. 2016, 1738, 290014. [Google Scholar]
- Kaplan, M.; Bekir, A. Construction of exact solutions to the space–time fractional differential equations via new approach. Optik 2017, 132, 1–8. [Google Scholar] [CrossRef]
- Ali, K.K.; Nuruddeen, R.; Hadhoud, A.R. New exact solitary wave solutions for the extended (3+1)-dimensional Jimbo-Miwa equations. Results Phys. 2018, 9, 12–16. [Google Scholar] [CrossRef]
- Korkmaz, A.; Hepson, O.E. Traveling waves in rational expressions of exponential functions to the conformable time fractional Jimbo–Miwa and Zakharov–Kuznetsov equations. Opt. Quantum Electron. 2018, 50, 42. [Google Scholar] [CrossRef] [Green Version]
- Sirisubtawee, S.; Koonprasert, S.; Khaopant, C.; Porka, W. Two Reliable Methods for Solving the (3+1)-Dimensional Space-Time Fractional Jimbo-Miwa Equation. Math. Probl. Eng. 2017, 2017, 9257019. [Google Scholar] [CrossRef]
- Kumar, D.; Seadawy, A.R.; Joardar, A.K. Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology. Chin. J. Phys. 2018, 56, 75–85. [Google Scholar] [CrossRef]
- Zhang, J.-F.; Wu, F.-M. Bäcklund transformation and multiple soliton solutions for the (3+1)-dimensional Jimbo-Miwa equation. Chin. Phys. 2002, 11, 425. [Google Scholar]
Fig. Nu. | S | A | W | Parameters Value |
---|---|---|---|---|
Periodic kink | 7.4 | 6 | ||
Singular | 15 | 0.5 | ||
Singular kink | 15 | 7 | ||
Singular | 20 | 1.9 | ||
Periodic kink | 1.2 | 0.7 | ||
periodic kink | 53 | 7 | ||
Kink | 10 | 6 | ||
periodic anti-kink | 15 | 6 | ||
periodic kink | 0.0006 | 6 | ||
periodic kink | 0.1 | 6.5 |
Method | Conditions | Similar |
---|---|---|
Exp -expansion method | √ | |
Improved F-expansion method | √ | |
Extended -expansion method | √ | |
Extended tanh- function method | √ | |
Simplest equation method | √ | |
Extended simplest equation method | √ | |
Generalized Riccati expansion method | √ | |
Generalized Sinh–Gordon expansion method | x | |
Riccati–Bernoulli Sub-ODE method | x |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khater, M.M.A.; Attia, R.A.M.; Lu, D. Explicit Lump Solitary Wave of Certain Interesting (3+1)-Dimensional Waves in Physics via Some Recent Traveling Wave Methods. Entropy 2019, 21, 397. https://doi.org/10.3390/e21040397
Khater MMA, Attia RAM, Lu D. Explicit Lump Solitary Wave of Certain Interesting (3+1)-Dimensional Waves in Physics via Some Recent Traveling Wave Methods. Entropy. 2019; 21(4):397. https://doi.org/10.3390/e21040397
Chicago/Turabian StyleKhater, Mostafa M. A., Raghda A. M. Attia, and Dianchen Lu. 2019. "Explicit Lump Solitary Wave of Certain Interesting (3+1)-Dimensional Waves in Physics via Some Recent Traveling Wave Methods" Entropy 21, no. 4: 397. https://doi.org/10.3390/e21040397
APA StyleKhater, M. M. A., Attia, R. A. M., & Lu, D. (2019). Explicit Lump Solitary Wave of Certain Interesting (3+1)-Dimensional Waves in Physics via Some Recent Traveling Wave Methods. Entropy, 21(4), 397. https://doi.org/10.3390/e21040397